Properties

Label 20.12.7673717572...8125.1
Degree $20$
Signature $[12, 4]$
Discriminant $3^{10}\cdot 5^{13}\cdot 239^{8}$
Root discriminant $44.08$
Ramified primes $3, 5, 239$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T144

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1919, 28531, -70483, 15219, 102557, -105543, 31876, 44190, -77472, 39944, 9350, -22584, 11186, -596, -2152, 1265, -264, -39, 38, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 38*x^18 - 39*x^17 - 264*x^16 + 1265*x^15 - 2152*x^14 - 596*x^13 + 11186*x^12 - 22584*x^11 + 9350*x^10 + 39944*x^9 - 77472*x^8 + 44190*x^7 + 31876*x^6 - 105543*x^5 + 102557*x^4 + 15219*x^3 - 70483*x^2 + 28531*x - 1919)
 
gp: K = bnfinit(x^20 - 10*x^19 + 38*x^18 - 39*x^17 - 264*x^16 + 1265*x^15 - 2152*x^14 - 596*x^13 + 11186*x^12 - 22584*x^11 + 9350*x^10 + 39944*x^9 - 77472*x^8 + 44190*x^7 + 31876*x^6 - 105543*x^5 + 102557*x^4 + 15219*x^3 - 70483*x^2 + 28531*x - 1919, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 38 x^{18} - 39 x^{17} - 264 x^{16} + 1265 x^{15} - 2152 x^{14} - 596 x^{13} + 11186 x^{12} - 22584 x^{11} + 9350 x^{10} + 39944 x^{9} - 77472 x^{8} + 44190 x^{7} + 31876 x^{6} - 105543 x^{5} + 102557 x^{4} + 15219 x^{3} - 70483 x^{2} + 28531 x - 1919 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(767371757239298309394737548828125=3^{10}\cdot 5^{13}\cdot 239^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $44.08$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 239$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} + \frac{4}{11} a^{14} - \frac{5}{11} a^{13} - \frac{2}{11} a^{12} + \frac{3}{11} a^{10} - \frac{3}{11} a^{8} - \frac{5}{11} a^{7} + \frac{5}{11} a^{6} + \frac{3}{11} a^{5} - \frac{5}{11} a^{4} + \frac{1}{11} a^{3} + \frac{1}{11} a^{2} + \frac{2}{11} a + \frac{4}{11}$, $\frac{1}{11} a^{16} + \frac{1}{11} a^{14} - \frac{4}{11} a^{13} - \frac{3}{11} a^{12} + \frac{3}{11} a^{11} - \frac{1}{11} a^{10} - \frac{3}{11} a^{9} - \frac{4}{11} a^{8} + \frac{3}{11} a^{7} + \frac{5}{11} a^{6} + \frac{5}{11} a^{5} - \frac{1}{11} a^{4} - \frac{3}{11} a^{3} - \frac{2}{11} a^{2} - \frac{4}{11} a - \frac{5}{11}$, $\frac{1}{11} a^{17} + \frac{3}{11} a^{14} + \frac{2}{11} a^{13} + \frac{5}{11} a^{12} - \frac{1}{11} a^{11} + \frac{5}{11} a^{10} - \frac{4}{11} a^{9} - \frac{5}{11} a^{8} - \frac{1}{11} a^{7} - \frac{4}{11} a^{5} + \frac{2}{11} a^{4} - \frac{3}{11} a^{3} - \frac{5}{11} a^{2} + \frac{4}{11} a - \frac{4}{11}$, $\frac{1}{121} a^{18} + \frac{5}{121} a^{17} - \frac{1}{121} a^{16} + \frac{3}{121} a^{15} - \frac{28}{121} a^{14} + \frac{41}{121} a^{13} - \frac{50}{121} a^{12} + \frac{19}{121} a^{11} - \frac{5}{11} a^{10} + \frac{4}{11} a^{9} + \frac{4}{11} a^{8} + \frac{58}{121} a^{7} + \frac{57}{121} a^{6} + \frac{54}{121} a^{5} - \frac{58}{121} a^{4} - \frac{39}{121} a^{3} + \frac{25}{121} a^{2} + \frac{42}{121} a + \frac{18}{121}$, $\frac{1}{51520476945949127753420711287676379301706017} a^{19} + \frac{79505404334259336909241456709812865971496}{51520476945949127753420711287676379301706017} a^{18} + \frac{69670626364746842654440255259787513126691}{4683679722359011613947337389788761754700547} a^{17} + \frac{333480059893601970194305101769065989896774}{51520476945949127753420711287676379301706017} a^{16} - \frac{1555813109843318169419688877087646922144822}{51520476945949127753420711287676379301706017} a^{15} + \frac{20365801819209197985195289378122989414805378}{51520476945949127753420711287676379301706017} a^{14} - \frac{180147612839277555359922718660775835066051}{4683679722359011613947337389788761754700547} a^{13} + \frac{16965270147659422729689799560010299168795036}{51520476945949127753420711287676379301706017} a^{12} - \frac{18576512524164572624433991976047609479080764}{51520476945949127753420711287676379301706017} a^{11} - \frac{1338713998050332067099248235194032792341779}{4683679722359011613947337389788761754700547} a^{10} + \frac{192793849643312064685858826268705464728434}{425789065669001055813394308162614704972777} a^{9} + \frac{24724924959102109752069020214715382087287970}{51520476945949127753420711287676379301706017} a^{8} - \frac{13409750468931814342533927154048590395418248}{51520476945949127753420711287676379301706017} a^{7} + \frac{21035831221393052673048199661841837032068467}{51520476945949127753420711287676379301706017} a^{6} - \frac{12078546982595212281945431212313061346090090}{51520476945949127753420711287676379301706017} a^{5} - \frac{514932890106710300152728528538565550771750}{4683679722359011613947337389788761754700547} a^{4} + \frac{9981074687853117350955818342082906497983609}{51520476945949127753420711287676379301706017} a^{3} - \frac{22193074274987571783782459610139049798138056}{51520476945949127753420711287676379301706017} a^{2} - \frac{273252502410792279987484676015215678863048}{4683679722359011613947337389788761754700547} a + \frac{1331937422634593002438334892787671702869871}{51520476945949127753420711287676379301706017}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2284207916.87 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T144:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 640
The 40 conjugacy class representatives for t20n144
Character table for t20n144 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ R R $20$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ $20$ $20$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.8.6.1$x^{8} + 9 x^{4} + 36$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
239Data not computed