Normalized defining polynomial
\( x^{20} - 7 x^{19} - 92 x^{18} + 435 x^{17} + 1741 x^{16} + 18900 x^{15} - 67527 x^{14} - 979307 x^{13} + 5008645 x^{12} - 31077848 x^{11} + 76184585 x^{10} + 919008309 x^{9} - 5672893696 x^{8} + 10488672339 x^{7} + 5107389961 x^{6} - 68290842738 x^{5} + 151048249292 x^{4} - 72847922392 x^{3} - 253823856008 x^{2} + 421030711344 x - 189844967504 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(761936733720316773653074450825066341622349824=2^{20}\cdot 11^{8}\cdot 29^{6}\cdot 113^{8}\cdot 463^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $175.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 29, 113, 463$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} + \frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{1}{4} a^{7} - \frac{3}{8} a^{6} + \frac{1}{8} a^{5} + \frac{3}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{15} + \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{8} a^{8} + \frac{3}{8} a^{7} - \frac{1}{4} a^{6} - \frac{3}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{13} + \frac{1}{8} a^{12} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{88} a^{17} - \frac{1}{88} a^{16} + \frac{1}{22} a^{14} - \frac{3}{88} a^{13} - \frac{5}{22} a^{12} + \frac{2}{11} a^{11} + \frac{2}{11} a^{10} - \frac{21}{88} a^{9} + \frac{5}{22} a^{8} - \frac{1}{44} a^{7} + \frac{1}{11} a^{6} - \frac{9}{44} a^{5} + \frac{13}{88} a^{4} - \frac{3}{11} a^{3} - \frac{3}{22} a^{2} - \frac{1}{22} a + \frac{3}{11}$, $\frac{1}{88} a^{18} - \frac{1}{88} a^{16} + \frac{1}{22} a^{15} + \frac{1}{88} a^{14} - \frac{1}{88} a^{13} + \frac{9}{44} a^{12} + \frac{5}{44} a^{11} - \frac{5}{88} a^{10} + \frac{21}{88} a^{9} - \frac{1}{22} a^{8} - \frac{2}{11} a^{7} - \frac{5}{44} a^{6} + \frac{17}{88} a^{5} + \frac{1}{8} a^{4} + \frac{15}{44} a^{3} + \frac{7}{22} a^{2} + \frac{5}{22} a + \frac{3}{11}$, $\frac{1}{687238922515122376873518549227291571367714820671710858114190402497124869493417543741306520743879191041816} a^{19} + \frac{56510188095817642703689030609428478258313855369859203310271353330694687695069373916787707512897954245}{31238132841596471676069024964876889607623400939623220823372291022596584976973524715513932761085417774628} a^{18} + \frac{297852005167979195113153095545023768791262852435331323957017365763049316338122501064281383372319427962}{85904865314390297109189818653411446420964352583963857264273800312140608686677192967663315092984898880227} a^{17} - \frac{14388130711211028408987357950530907706124192570186000031062104321478316538120091515768767020518648200643}{343619461257561188436759274613645785683857410335855429057095201248562434746708771870653260371939595520908} a^{16} - \frac{5645191489867801427158965784709328559377053572060196448573484357692826798635891422530369067648942108389}{171809730628780594218379637306822892841928705167927714528547600624281217373354385935326630185969797760454} a^{15} - \frac{23004722181593676118388942532990394272923601205690301173170156530092068273788343045380482502043928502501}{687238922515122376873518549227291571367714820671710858114190402497124869493417543741306520743879191041816} a^{14} - \frac{1837641054549064090390441888941847238674240136349323311021092675705939975524950017604616819787560043355}{15619066420798235838034512482438444803811700469811610411686145511298292488486762357756966380542708887314} a^{13} - \frac{659820970325633543942826133414680927381231361612011248672459387167375256450844103615805025125732738365}{31238132841596471676069024964876889607623400939623220823372291022596584976973524715513932761085417774628} a^{12} + \frac{34422558734957789268517349974296053411891253429072518906854002563852188732350191350518341111829809985407}{343619461257561188436759274613645785683857410335855429057095201248562434746708771870653260371939595520908} a^{11} + \frac{165510805381098687622719585964543478736231427101814378186198925589336008998961418188125507660787557780343}{687238922515122376873518549227291571367714820671710858114190402497124869493417543741306520743879191041816} a^{10} - \frac{100975301068709370841781681522003105560131979924179237877776126300383885662834133915871646785886909931}{343619461257561188436759274613645785683857410335855429057095201248562434746708771870653260371939595520908} a^{9} + \frac{7697347012872374315838990273810707638904500159852246626142754397469519186696853408038381881210283235733}{343619461257561188436759274613645785683857410335855429057095201248562434746708771870653260371939595520908} a^{8} + \frac{15518603248225579888343734028270501438773118465276363792350673748023159844130795979353448219120502032797}{62476265683192943352138049929753779215246801879246441646744582045193169953947049431027865522170835549256} a^{7} + \frac{61253017106831094917351478197991561069822420097044150000093292278480851494362021736641279495494078190189}{687238922515122376873518549227291571367714820671710858114190402497124869493417543741306520743879191041816} a^{6} + \frac{90432578276170825113419814647674959674581708141170061623664768013321914719803930873335268371976061413795}{343619461257561188436759274613645785683857410335855429057095201248562434746708771870653260371939595520908} a^{5} + \frac{10887433315422385933521722201668411719742261196498654327402049353439016159268553317268586715748425582329}{171809730628780594218379637306822892841928705167927714528547600624281217373354385935326630185969797760454} a^{4} + \frac{737567345807110349122960990902652374621076200941050137848720597292469299316673727497680416074398768435}{49088494465365884062394182087663683669122487190836489865299314464080347820958395981521894338848513645844} a^{3} + \frac{2736429312933353175859030391763524184257290215674968449573278513298400234776792057436777666021688882977}{12272123616341471015598545521915920917280621797709122466324828616020086955239598995380473584712128411461} a^{2} - \frac{307364560430439881908332519947269066010090050041027319388514087898035361397363416303980949794866667442}{7809533210399117919017256241219222401905850234905805205843072755649146244243381178878483190271354443657} a + \frac{16323097442097347757165507761856682081950550148854708443290277086849342634791268929262566259638217936822}{85904865314390297109189818653411446420964352583963857264273800312140608686677192967663315092984898880227}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1879434087440000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 90 conjugacy class representatives for t20n685 are not computed |
| Character table for t20n685 is not computed |
Intermediate fields
| 5.5.6180196.1, 10.10.1107649855354064.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.6 | $x^{4} - 20$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ |
| 2.4.6.6 | $x^{4} - 20$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 29.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $113$ | 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 463 | Data not computed | ||||||