Normalized defining polynomial
\( x^{20} - 4 x^{19} - 139 x^{16} + 262 x^{15} + 245 x^{14} - 1012 x^{13} + 2727 x^{12} - 1350 x^{11} - 5828 x^{10} + 9782 x^{9} - 9436 x^{8} - 5429 x^{7} + 20598 x^{6} - 8915 x^{5} - 6469 x^{4} + 9635 x^{3} - 2343 x^{2} - 2773 x + 691 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(750553614330423255547227138649=61^{8}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{16} + \frac{1}{3} a^{15} + \frac{4}{9} a^{14} - \frac{2}{9} a^{13} + \frac{4}{9} a^{12} - \frac{1}{3} a^{11} + \frac{4}{9} a^{9} + \frac{1}{9} a^{7} - \frac{1}{3} a^{6} + \frac{2}{9} a^{5} - \frac{4}{9} a^{4} + \frac{1}{3} a^{3} - \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{27} a^{18} + \frac{1}{27} a^{17} + \frac{1}{27} a^{16} + \frac{1}{27} a^{15} - \frac{1}{9} a^{14} - \frac{13}{27} a^{12} + \frac{1}{9} a^{11} + \frac{13}{27} a^{10} - \frac{1}{27} a^{9} + \frac{1}{27} a^{8} - \frac{10}{27} a^{7} - \frac{13}{27} a^{6} - \frac{5}{27} a^{4} - \frac{1}{9} a^{3} - \frac{11}{27} a^{2} + \frac{7}{27} a + \frac{4}{27}$, $\frac{1}{47230047600381489788153206846129834636689} a^{19} + \frac{2731522416853208375304922855041542141}{266836427120799377334198908735196805857} a^{18} - \frac{4315395870069536493108232902901666813}{266836427120799377334198908735196805857} a^{17} + \frac{21182473833383223665556496410981264770}{266836427120799377334198908735196805857} a^{16} - \frac{398590173157673153815642353986646931387}{47230047600381489788153206846129834636689} a^{15} - \frac{4597285703367725739114345960820347991292}{15743349200127163262717735615376611545563} a^{14} + \frac{12093578684029103483702488006453147244105}{47230047600381489788153206846129834636689} a^{13} + \frac{8527780695379504386485000335805868106174}{47230047600381489788153206846129834636689} a^{12} + \frac{6431516608545006486429639995661153525769}{47230047600381489788153206846129834636689} a^{11} + \frac{5114627523672482936700068743003615138024}{47230047600381489788153206846129834636689} a^{10} - \frac{8396726639868783226964165406426757861930}{47230047600381489788153206846129834636689} a^{9} - \frac{1851276666248718401087477439440074175249}{47230047600381489788153206846129834636689} a^{8} + \frac{1647670558668630181997168460479153465221}{15743349200127163262717735615376611545563} a^{7} - \frac{2030547665219155854449726936993652177893}{47230047600381489788153206846129834636689} a^{6} + \frac{7988672917308565335931120715487746869912}{47230047600381489788153206846129834636689} a^{5} - \frac{16523746703315469980549072140723330416457}{47230047600381489788153206846129834636689} a^{4} + \frac{786076588477953057441873183956739998497}{47230047600381489788153206846129834636689} a^{3} + \frac{3543512814415176489131902199485706298949}{15743349200127163262717735615376611545563} a^{2} + \frac{725373094344810235363087715795082571315}{5247783066709054420905911871792203848521} a - \frac{19603397444155595171547148269072247411639}{47230047600381489788153206846129834636689}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 45175840.6676 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.24217.1, 10.10.866344974205093.1, 10.6.35774248429.1, 10.6.14202376626313.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 397 | Data not computed | ||||||