Normalized defining polynomial
\( x^{20} - 8 x^{19} + 18 x^{18} + 88 x^{17} - 828 x^{16} + 2794 x^{15} - 4056 x^{14} - 2026 x^{13} + 19048 x^{12} - 33756 x^{11} + 23208 x^{10} + 16374 x^{9} - 53929 x^{8} + 57422 x^{7} - 36024 x^{6} + 11338 x^{5} + 3974 x^{4} - 3442 x^{3} - 264 x^{2} + 128 x + 13 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(706388839731582814105670315409408=2^{30}\cdot 3^{15}\cdot 71^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{108009659231044376987455129787860915852049} a^{19} - \frac{950399492838609266282128971664074169039}{108009659231044376987455129787860915852049} a^{18} - \frac{3665071743128461851614012840000972272345}{108009659231044376987455129787860915852049} a^{17} + \frac{18815489356751440396249439616719563304516}{108009659231044376987455129787860915852049} a^{16} + \frac{20103639867934209798725281591957482953041}{108009659231044376987455129787860915852049} a^{15} + \frac{3743073229477557845229234299306256446662}{108009659231044376987455129787860915852049} a^{14} - \frac{19024949283040383800266039952578608137571}{108009659231044376987455129787860915852049} a^{13} - \frac{27889923292276762437303700839153332758612}{108009659231044376987455129787860915852049} a^{12} - \frac{37015286502856404990272277590429054773265}{108009659231044376987455129787860915852049} a^{11} + \frac{4476814578868407583137111496648501806792}{108009659231044376987455129787860915852049} a^{10} - \frac{14688203485432670549259434652608634817338}{108009659231044376987455129787860915852049} a^{9} - \frac{6457501858445121675179798162002541495860}{108009659231044376987455129787860915852049} a^{8} - \frac{23395570189960787737252839602195038013232}{108009659231044376987455129787860915852049} a^{7} + \frac{44026446434600066364811759003906558241572}{108009659231044376987455129787860915852049} a^{6} + \frac{4004162098361799009932989998458371142}{108009659231044376987455129787860915852049} a^{5} + \frac{11979383096221468571232323445086625906502}{108009659231044376987455129787860915852049} a^{4} - \frac{48447190933858233309151086620037984802572}{108009659231044376987455129787860915852049} a^{3} + \frac{21948713025758520676630708930464898571901}{108009659231044376987455129787860915852049} a^{2} + \frac{13296893058775401215957653254225223452332}{108009659231044376987455129787860915852049} a - \frac{28786996935364206344705318695069201854132}{108009659231044376987455129787860915852049}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1794901705.67 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 51200 |
| The 152 conjugacy class representatives for t20n647 are not computed |
| Character table for t20n647 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 10.10.6323239406592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $71$ | 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 71.10.9.5 | $x^{10} - 18176$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |