Normalized defining polynomial
\( x^{20} - 8 x^{19} + 18 x^{18} + 64 x^{17} - 456 x^{16} + 742 x^{15} + 1512 x^{14} - 8476 x^{13} + 11518 x^{12} + 12156 x^{11} - 66624 x^{10} + 87666 x^{9} + 23639 x^{8} - 200536 x^{7} + 233064 x^{6} - 106766 x^{5} - 10204 x^{4} + 37256 x^{3} - 18846 x^{2} + 4208 x - 359 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(706388839731582814105670315409408=2^{30}\cdot 3^{15}\cdot 71^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1802740975937164011697187066592593876281} a^{19} - \frac{608316183495526936346138349522775583095}{1802740975937164011697187066592593876281} a^{18} + \frac{647378527754756779955755992467431561791}{1802740975937164011697187066592593876281} a^{17} + \frac{901152783270892426698816620869728264448}{1802740975937164011697187066592593876281} a^{16} + \frac{641442137212339322599056646027527962602}{1802740975937164011697187066592593876281} a^{15} + \frac{32443780838155591655442376094434744425}{138672382764397231669014389737891836637} a^{14} + \frac{65734703238282199090296410981492294600}{1802740975937164011697187066592593876281} a^{13} + \frac{5816493020316369837055345110966503322}{16538908036120770749515477675161411709} a^{12} - \frac{429033612280390706344214645603813038353}{1802740975937164011697187066592593876281} a^{11} + \frac{163503014433002448952846900339823243774}{1802740975937164011697187066592593876281} a^{10} - \frac{756582005523193325215189865634378463872}{1802740975937164011697187066592593876281} a^{9} - \frac{508952873998455685450435604098832537903}{1802740975937164011697187066592593876281} a^{8} + \frac{6739327451647584731518935751751706940}{16538908036120770749515477675161411709} a^{7} + \frac{31256170415055735771280154597970374638}{138672382764397231669014389737891836637} a^{6} + \frac{30491677053093673175820100700085396676}{138672382764397231669014389737891836637} a^{5} + \frac{419484716505886168197268777551600304976}{1802740975937164011697187066592593876281} a^{4} + \frac{414810093267414050152135591802122900786}{1802740975937164011697187066592593876281} a^{3} + \frac{37625246645672506151902718196723526186}{138672382764397231669014389737891836637} a^{2} - \frac{184231811908037525410544205389154736670}{1802740975937164011697187066592593876281} a + \frac{431836472604419032965744762618329773585}{1802740975937164011697187066592593876281}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1594259308.02 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 51200 |
| The 152 conjugacy class representatives for t20n647 are not computed |
| Character table for t20n647 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 10.10.6323239406592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $71$ | 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 71.10.9.5 | $x^{10} - 18176$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |