Normalized defining polynomial
\( x^{20} - 8 x^{19} + 20 x^{18} - 8 x^{17} - 60 x^{16} + 220 x^{15} - 350 x^{14} - 40 x^{13} + 732 x^{12} - 1120 x^{11} + 1178 x^{10} + 676 x^{9} - 2919 x^{8} + 1432 x^{7} + 1324 x^{6} - 1436 x^{5} - 142 x^{4} + 504 x^{3} - 24 x^{2} - 72 x + 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(705364768808763611651745450561=3^{8}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{12} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{5}{12} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{12} a^{11} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{12} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{4} a$, $\frac{1}{12} a^{12} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{12} a^{13} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{12} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{12} a^{14} - \frac{1}{4} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{12} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{24} a^{15} - \frac{1}{24} a^{12} - \frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{6} a^{8} + \frac{1}{12} a^{7} + \frac{5}{24} a^{6} - \frac{5}{24} a^{5} - \frac{1}{24} a^{4} - \frac{1}{24} a^{2} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{24} a^{16} - \frac{1}{24} a^{13} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{1}{6} a^{9} + \frac{1}{12} a^{8} + \frac{5}{24} a^{7} - \frac{5}{24} a^{6} - \frac{1}{24} a^{5} - \frac{1}{24} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8} a$, $\frac{1}{24} a^{17} - \frac{1}{24} a^{14} - \frac{1}{24} a^{12} - \frac{1}{24} a^{11} - \frac{1}{4} a^{9} - \frac{1}{8} a^{8} - \frac{1}{24} a^{7} - \frac{1}{24} a^{6} - \frac{1}{6} a^{5} - \frac{3}{8} a^{4} - \frac{1}{6} a^{3} + \frac{1}{24} a^{2}$, $\frac{1}{72} a^{18} - \frac{1}{72} a^{17} - \frac{1}{72} a^{16} - \frac{1}{72} a^{15} + \frac{1}{72} a^{14} - \frac{1}{36} a^{13} - \frac{1}{24} a^{10} - \frac{1}{72} a^{9} - \frac{1}{9} a^{8} + \frac{13}{72} a^{7} - \frac{5}{36} a^{6} + \frac{5}{36} a^{5} - \frac{29}{72} a^{4} - \frac{1}{3} a^{3} - \frac{1}{8} a^{2} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{167546728316952} a^{19} + \frac{75206856299}{27924454719492} a^{18} - \frac{334757305577}{167546728316952} a^{17} + \frac{2318257856587}{167546728316952} a^{16} - \frac{995392429289}{55848909438984} a^{15} + \frac{2191756856323}{83773364158476} a^{14} - \frac{3356622199343}{167546728316952} a^{13} - \frac{94957075490}{2327037893291} a^{12} + \frac{762906025941}{18616303146328} a^{11} - \frac{2810048789813}{83773364158476} a^{10} + \frac{3337424100673}{13962227359746} a^{9} - \frac{5108667973967}{83773364158476} a^{8} - \frac{6176035687997}{55848909438984} a^{7} - \frac{4091106020491}{55848909438984} a^{6} - \frac{37881584583415}{167546728316952} a^{5} - \frac{67482422821091}{167546728316952} a^{4} - \frac{1689859096921}{27924454719492} a^{3} + \frac{949559036871}{2327037893291} a^{2} + \frac{1254237308421}{9308151573164} a - \frac{4575371524693}{18616303146328}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 77469369.7374 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:D_5$ (as 20T43):
| A solvable group of order 160 |
| The 10 conjugacy class representatives for $C_2^4:D_5$ |
| Character table for $C_2^4:D_5$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.6.2094413889681.1, 10.6.839859969762081.2, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||