Normalized defining polynomial
\( x^{20} - 4 x^{19} - 6 x^{18} + 44 x^{17} + 2 x^{16} - 248 x^{15} + 60 x^{14} + 1225 x^{13} - 659 x^{12} - 4737 x^{11} + 4636 x^{10} + 11066 x^{9} - 15941 x^{8} - 14415 x^{7} + 28792 x^{6} + 10399 x^{5} - 27964 x^{4} - 4598 x^{3} + 13230 x^{2} + 1424 x - 1991 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(70097555898814099663913906250000=2^{4}\cdot 3^{10}\cdot 5^{10}\cdot 52501^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 52501$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{4} a^{16} + \frac{1}{4} a^{15} + \frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{14} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4}$, $\frac{1}{3356} a^{18} - \frac{325}{3356} a^{17} - \frac{397}{3356} a^{16} - \frac{691}{1678} a^{15} - \frac{311}{839} a^{14} - \frac{52}{839} a^{13} + \frac{755}{3356} a^{12} + \frac{495}{1678} a^{11} + \frac{439}{3356} a^{10} + \frac{847}{3356} a^{9} + \frac{277}{1678} a^{8} - \frac{213}{3356} a^{7} - \frac{217}{1678} a^{6} - \frac{629}{1678} a^{5} + \frac{317}{3356} a^{4} + \frac{1431}{3356} a^{3} + \frac{207}{3356} a^{2} + \frac{215}{1678} a - \frac{109}{839}$, $\frac{1}{20559337692019396} a^{19} + \frac{2093461233071}{20559337692019396} a^{18} + \frac{32072711356317}{20559337692019396} a^{17} - \frac{515420186389983}{10279668846009698} a^{16} + \frac{2363979778279030}{5139834423004849} a^{15} - \frac{1921825054174739}{10279668846009698} a^{14} - \frac{4684716083976645}{20559337692019396} a^{13} + \frac{3773187238236567}{10279668846009698} a^{12} - \frac{3542926580318543}{20559337692019396} a^{11} - \frac{1679276922833715}{20559337692019396} a^{10} - \frac{1314538661365668}{5139834423004849} a^{9} - \frac{7155810052991809}{20559337692019396} a^{8} + \frac{679197856334487}{5139834423004849} a^{7} + \frac{287556345995669}{5139834423004849} a^{6} - \frac{4903853367467117}{20559337692019396} a^{5} - \frac{2428914085226417}{20559337692019396} a^{4} + \frac{10082566231974353}{20559337692019396} a^{3} - \frac{243048659961523}{10279668846009698} a^{2} - \frac{241670253088584}{5139834423004849} a + \frac{3198382222043923}{10279668846009698}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 673170267.007 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n760 are not computed |
| Character table for t20n760 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.8613609378125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 52501 | Data not computed | ||||||