Normalized defining polynomial
\( x^{20} + 20 x^{18} - 3590 x^{16} + 68240 x^{14} + 66910 x^{12} - 7141820 x^{10} + 11872700 x^{8} + 199488800 x^{6} - 201203800 x^{4} - 652111600 x^{2} + 576480100 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6752487198279797309440000000000000000000000=2^{58}\cdot 5^{22}\cdot 7^{6}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $138.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{70} a^{10} + \frac{2}{7} a^{8} - \frac{2}{7} a^{6} - \frac{1}{7} a^{4} - \frac{1}{7} a^{2}$, $\frac{1}{70} a^{11} + \frac{2}{7} a^{9} - \frac{2}{7} a^{7} - \frac{1}{7} a^{5} - \frac{1}{7} a^{3}$, $\frac{1}{490} a^{12} - \frac{1}{490} a^{10} - \frac{9}{49} a^{8} + \frac{6}{49} a^{6} - \frac{1}{49} a^{4} + \frac{2}{7} a^{2}$, $\frac{1}{490} a^{13} - \frac{1}{490} a^{11} - \frac{9}{49} a^{9} + \frac{6}{49} a^{7} - \frac{1}{49} a^{5} + \frac{2}{7} a^{3}$, $\frac{1}{3430} a^{14} - \frac{1}{3430} a^{12} + \frac{4}{1715} a^{10} + \frac{104}{343} a^{8} + \frac{97}{343} a^{6} + \frac{23}{49} a^{4} + \frac{1}{7} a^{2}$, $\frac{1}{3430} a^{15} - \frac{1}{3430} a^{13} + \frac{4}{1715} a^{11} + \frac{104}{343} a^{9} + \frac{97}{343} a^{7} + \frac{23}{49} a^{5} + \frac{1}{7} a^{3}$, $\frac{1}{24010} a^{16} - \frac{1}{24010} a^{14} + \frac{4}{12005} a^{12} + \frac{11}{24010} a^{10} - \frac{589}{2401} a^{8} + \frac{121}{343} a^{6} + \frac{22}{49} a^{4} - \frac{1}{7} a^{2}$, $\frac{1}{24010} a^{17} - \frac{1}{24010} a^{15} + \frac{4}{12005} a^{13} + \frac{11}{24010} a^{11} - \frac{589}{2401} a^{9} + \frac{121}{343} a^{7} + \frac{22}{49} a^{5} - \frac{1}{7} a^{3}$, $\frac{1}{16817477553421436557058358778086050} a^{18} - \frac{31750330385708581936295613939}{3363495510684287311411671755617210} a^{16} - \frac{78497829136610155991467336079}{1681747755342143655705835877808605} a^{14} + \frac{900994740240036561197519391873}{1681747755342143655705835877808605} a^{12} + \frac{8775707643103487522618786674538}{1681747755342143655705835877808605} a^{10} + \frac{586613057756683964946791227468}{4903054680297794914594273696235} a^{8} - \frac{1472107645431414467769387236645}{6864276552416912880431983174729} a^{6} - \frac{180308500012316531045241760955}{980610936059558982918854739247} a^{4} - \frac{10176208433132001295904731929}{140087276579936997559836391321} a^{2} - \frac{8718881188534160118251205830}{20012468082848142508548055903}$, $\frac{1}{235444685747900111798817022893204700} a^{19} - \frac{183046678321348392433869392636}{11772234287395005589940851144660235} a^{17} + \frac{762025830343011829367551011847}{23544468574790011179881702289320470} a^{15} + \frac{21633911674070712200053305307381}{23544468574790011179881702289320470} a^{13} + \frac{64485295474344715714479205213978}{11772234287395005589940851144660235} a^{11} + \frac{739486843792429295473476975540977}{3363495510684287311411671755617210} a^{9} - \frac{12193191800146268820028455622790}{48049935866918390163023882223103} a^{7} - \frac{1941307547669611447563316051505}{6864276552416912880431983174729} a^{5} - \frac{355306295666408494547543344267}{980610936059558982918854739247} a^{3} + \frac{15653027488581062449422452988}{140087276579936997559836391321} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 163219460304000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 204800 |
| The 116 conjugacy class representatives for t20n872 are not computed |
| Character table for t20n872 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.1479680000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 17.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |