Normalized defining polynomial
\( x^{20} - 6 x^{19} - 3 x^{18} + 98 x^{17} - 268 x^{16} + 190 x^{15} + 640 x^{14} - 2478 x^{13} + 4090 x^{12} - 1614 x^{11} - 7310 x^{10} + 16026 x^{9} - 11895 x^{8} - 5222 x^{7} + 16697 x^{6} - 10778 x^{5} - 864 x^{4} + 4278 x^{3} - 1694 x^{2} - 20 x + 89 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(674425532537559799418460307456=2^{20}\cdot 11^{16}\cdot 241^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{386140784589554707057132494839879} a^{19} - \frac{147382842349078453763346348013377}{386140784589554707057132494839879} a^{18} - \frac{56171273285658918918527256871402}{386140784589554707057132494839879} a^{17} - \frac{154696516364447632454127143203786}{386140784589554707057132494839879} a^{16} + \frac{116958697907834926145800128084228}{386140784589554707057132494839879} a^{15} + \frac{88385998795782380520717453517366}{386140784589554707057132494839879} a^{14} + \frac{106334639054442754224206460581378}{386140784589554707057132494839879} a^{13} + \frac{37235896082968375298751353350695}{386140784589554707057132494839879} a^{12} - \frac{93650848750010512617967719770856}{386140784589554707057132494839879} a^{11} - \frac{41177922799640336445912745562765}{386140784589554707057132494839879} a^{10} - \frac{179320140863355634133974929107248}{386140784589554707057132494839879} a^{9} + \frac{115742288337490976363351963312628}{386140784589554707057132494839879} a^{8} - \frac{6796997106660765784080348082623}{16788729764763248132918804123473} a^{7} - \frac{55717111977933506354642982108753}{386140784589554707057132494839879} a^{6} + \frac{118803244182962628293430670617056}{386140784589554707057132494839879} a^{5} - \frac{79120565837526862017241213343501}{386140784589554707057132494839879} a^{4} + \frac{33818933067376740407826926980070}{386140784589554707057132494839879} a^{3} + \frac{16628322076074699737368714442977}{386140784589554707057132494839879} a^{2} + \frac{52278824298352005886831918354512}{386140784589554707057132494839879} a - \frac{58727820347748341375537282230482}{386140784589554707057132494839879}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54067536.9661 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.52900342088704.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ |
| 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 11 | Data not computed | ||||||
| 241 | Data not computed | ||||||