Normalized defining polynomial
\( x^{20} - 20 x^{18} - 180 x^{17} + 170 x^{16} + 1008 x^{15} + 9750 x^{14} + 20280 x^{13} - 94900 x^{12} - 271700 x^{11} - 605440 x^{10} + 2794600 x^{9} + 1432545 x^{8} + 6431480 x^{7} - 16284640 x^{6} - 52038544 x^{5} + 91239560 x^{4} - 10771040 x^{3} - 17382400 x^{2} + 2648640 x - 82448 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(668482906464715218862945075200000000000000000000=2^{59}\cdot 3^{16}\cdot 5^{20}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $246.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{14} a^{14} + \frac{1}{7} a^{12} + \frac{1}{7} a^{11} + \frac{3}{7} a^{10} + \frac{1}{7} a^{9} - \frac{3}{7} a^{8} - \frac{2}{7} a^{6} - \frac{2}{7} a^{4} + \frac{1}{7} a^{3} + \frac{3}{14} a^{2} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{14} a^{15} + \frac{1}{7} a^{13} + \frac{1}{7} a^{12} + \frac{3}{7} a^{11} + \frac{1}{7} a^{10} - \frac{3}{7} a^{9} - \frac{2}{7} a^{7} - \frac{2}{7} a^{5} + \frac{1}{7} a^{4} + \frac{3}{14} a^{3} - \frac{3}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{28} a^{16} - \frac{3}{7} a^{13} + \frac{1}{14} a^{12} + \frac{3}{7} a^{11} + \frac{5}{14} a^{10} - \frac{1}{7} a^{9} + \frac{2}{7} a^{8} + \frac{1}{7} a^{6} - \frac{3}{7} a^{5} - \frac{3}{28} a^{4} + \frac{1}{7} a^{3} - \frac{2}{7} a^{2} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{56} a^{17} - \frac{13}{28} a^{13} + \frac{1}{7} a^{12} + \frac{3}{28} a^{11} - \frac{2}{7} a^{10} + \frac{1}{14} a^{9} + \frac{3}{14} a^{8} - \frac{3}{7} a^{7} + \frac{3}{7} a^{6} + \frac{25}{56} a^{5} - \frac{2}{7} a^{4} - \frac{3}{14} a^{3} + \frac{5}{14} a^{2} - \frac{3}{14} a - \frac{3}{7}$, $\frac{1}{392} a^{18} + \frac{3}{196} a^{16} - \frac{3}{98} a^{15} - \frac{5}{196} a^{14} + \frac{24}{49} a^{13} - \frac{71}{196} a^{12} + \frac{2}{49} a^{11} + \frac{24}{49} a^{10} + \frac{37}{98} a^{9} - \frac{9}{49} a^{8} - \frac{19}{49} a^{7} + \frac{153}{392} a^{6} - \frac{19}{49} a^{5} - \frac{31}{196} a^{4} - \frac{16}{49} a^{3} + \frac{29}{98} a^{2} - \frac{10}{49} a + \frac{13}{49}$, $\frac{1}{2019159729203228537451729992123075326226668146032753804009008843624304} a^{19} - \frac{76496377318642240132085931519754414772487491664268103029553351893}{504789932300807134362932498030768831556667036508188451002252210906076} a^{18} - \frac{3281380042970585254132965263442156882111388436989109306526950406183}{1009579864601614268725864996061537663113334073016376902004504421812152} a^{17} - \frac{8160001774316368460467592817321934270443287852999809948057735002429}{504789932300807134362932498030768831556667036508188451002252210906076} a^{16} - \frac{7123354143836519430383581194340526818285928422928110807978935286117}{1009579864601614268725864996061537663113334073016376902004504421812152} a^{15} - \frac{385348463116561981455371031047111929782433607009877210539374836207}{18028211867885969084390446358241743984166679875292444678651864675217} a^{14} - \frac{245900003497994013660370911048295706825242674223130729962920521817515}{1009579864601614268725864996061537663113334073016376902004504421812152} a^{13} - \frac{5204435208993528300259997322510978043182137691963486688821399915505}{18028211867885969084390446358241743984166679875292444678651864675217} a^{12} + \frac{598269006452735881092012784027667886003678233162722794039998585997}{252394966150403567181466249015384415778333518254094225501126105453038} a^{11} - \frac{207843293329975028866727424145878783559851643979505826549844077554953}{504789932300807134362932498030768831556667036508188451002252210906076} a^{10} - \frac{19716265284845147681283799973727336813327524770104265794551878808849}{126197483075201783590733124507692207889166759127047112750563052726519} a^{9} - \frac{1182556963622435614102229658215477426836529902681115705188948132223}{2575458838269424154912920908320249140595239982184634954093123525031} a^{8} - \frac{408073606264464250013645532382112303935373467838206892043759433253679}{2019159729203228537451729992123075326226668146032753804009008843624304} a^{7} + \frac{41176064530523618228904389659272869039952684015172515234344755825061}{504789932300807134362932498030768831556667036508188451002252210906076} a^{6} + \frac{127230429986999495429583911495299397701419602357613594309636107138803}{1009579864601614268725864996061537663113334073016376902004504421812152} a^{5} - \frac{2891724354198807267072631528440673160518601466705099957423692136763}{126197483075201783590733124507692207889166759127047112750563052726519} a^{4} + \frac{252122142116406041251895800247312846416112945515012084410299730851079}{504789932300807134362932498030768831556667036508188451002252210906076} a^{3} + \frac{19841023376812237426194613030535608349922443329257870214128350048448}{126197483075201783590733124507692207889166759127047112750563052726519} a^{2} + \frac{111497051056917504325773582137263851967674995900964366837986047336605}{252394966150403567181466249015384415778333518254094225501126105453038} a - \frac{106892670272857396196175251973656220825466664734921386689846673410}{126197483075201783590733124507692207889166759127047112750563052726519}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 240115094787000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 70 conjugacy class representatives for t20n654 are not computed |
| Character table for t20n654 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 10.6.564586122240000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.8.26.4 | $x^{8} + 8 x^{7} + 12 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $[2, 3, 7/2, 4]$ | |
| 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.12.12.12 | $x^{12} + 165 x^{10} - 312 x^{9} - 288 x^{8} - 180 x^{7} - 36 x^{6} - 135 x^{5} - 243 x^{4} + 54 x^{3} + 81 x^{2} + 81 x - 162$ | $3$ | $4$ | $12$ | 12T41 | $[3/2, 3/2]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.10.8.1 | $x^{10} - 7 x^{5} + 147$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |