Properties

Label 20.12.6584630745...0000.3
Degree $20$
Signature $[12, 4]$
Discriminant $2^{28}\cdot 5^{11}\cdot 3469^{5}$
Root discriminant $49.08$
Ramified primes $2, 5, 3469$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T771

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![17345, 0, -34690, 0, -22531, 0, 80288, 0, -34594, 0, -14024, 0, 7642, 0, 840, 0, -263, 0, 2, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 2*x^18 - 263*x^16 + 840*x^14 + 7642*x^12 - 14024*x^10 - 34594*x^8 + 80288*x^6 - 22531*x^4 - 34690*x^2 + 17345)
 
gp: K = bnfinit(x^20 + 2*x^18 - 263*x^16 + 840*x^14 + 7642*x^12 - 14024*x^10 - 34594*x^8 + 80288*x^6 - 22531*x^4 - 34690*x^2 + 17345, 1)
 

Normalized defining polynomial

\( x^{20} + 2 x^{18} - 263 x^{16} + 840 x^{14} + 7642 x^{12} - 14024 x^{10} - 34594 x^{8} + 80288 x^{6} - 22531 x^{4} - 34690 x^{2} + 17345 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6584630745307392888012800000000000=2^{28}\cdot 5^{11}\cdot 3469^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.08$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 3469$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{104} a^{14} - \frac{1}{8} a^{12} - \frac{11}{104} a^{10} - \frac{1}{4} a^{9} - \frac{19}{104} a^{8} + \frac{7}{104} a^{6} + \frac{17}{104} a^{4} - \frac{5}{104} a^{2} + \frac{1}{4} a - \frac{1}{104}$, $\frac{1}{104} a^{15} - \frac{1}{8} a^{13} - \frac{11}{104} a^{11} - \frac{19}{104} a^{9} - \frac{1}{4} a^{8} + \frac{7}{104} a^{7} + \frac{17}{104} a^{5} - \frac{5}{104} a^{3} - \frac{1}{104} a + \frac{1}{4}$, $\frac{1}{104} a^{16} + \frac{1}{52} a^{12} - \frac{3}{52} a^{10} - \frac{3}{52} a^{8} + \frac{1}{26} a^{6} + \frac{17}{52} a^{4} - \frac{7}{52} a^{2} - \frac{3}{8}$, $\frac{1}{104} a^{17} + \frac{1}{52} a^{13} - \frac{3}{52} a^{11} - \frac{3}{52} a^{9} + \frac{1}{26} a^{7} - \frac{9}{52} a^{5} - \frac{1}{2} a^{4} - \frac{7}{52} a^{3} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{2766522011923357064} a^{18} - \frac{3221984823209179}{691630502980839266} a^{16} + \frac{5350078587392859}{1383261005961678532} a^{14} + \frac{425643375529193}{691630502980839266} a^{12} - \frac{2027042724158083}{691630502980839266} a^{10} - \frac{80851074644418911}{691630502980839266} a^{8} + \frac{25637411286351195}{1383261005961678532} a^{6} + \frac{89576249510018347}{345815251490419633} a^{4} + \frac{1309738187505918975}{2766522011923357064} a^{2} - \frac{303271542432946383}{691630502980839266}$, $\frac{1}{5533044023846714128} a^{19} - \frac{1}{5533044023846714128} a^{18} + \frac{13713233898734025}{5533044023846714128} a^{17} - \frac{13713233898734025}{5533044023846714128} a^{16} + \frac{5350078587392859}{2766522011923357064} a^{15} - \frac{5350078587392859}{2766522011923357064} a^{14} + \frac{27452459942629127}{2766522011923357064} a^{13} - \frac{27452459942629127}{2766522011923357064} a^{12} + \frac{65489411616847811}{691630502980839266} a^{11} - \frac{65489411616847811}{691630502980839266} a^{10} + \frac{26077395656717397}{691630502980839266} a^{9} - \frac{26077395656717397}{691630502980839266} a^{8} + \frac{6064596743807129}{212809385532565928} a^{7} - \frac{6064596743807129}{212809385532565928} a^{6} - \frac{572736063664902547}{2766522011923357064} a^{5} - \frac{810524942296775985}{2766522011923357064} a^{4} + \frac{245691259843089335}{5533044023846714128} a^{3} - \frac{245691259843089335}{5533044023846714128} a^{2} - \frac{175640415260526633}{5533044023846714128} a - \frac{2590881596662830431}{5533044023846714128}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6395502933.06 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T771:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 102400
The 130 conjugacy class representatives for t20n771 are not computed
Character table for t20n771 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.9627168800000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R $20$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ $20$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ $20$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ $20$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3469Data not computed