Normalized defining polynomial
\( x^{20} - 8 x^{19} + 28 x^{18} - 56 x^{17} - 88 x^{16} + 838 x^{15} - 1630 x^{14} + 1708 x^{13} - 370 x^{12} - 10284 x^{11} + 31022 x^{10} - 56488 x^{9} + 24668 x^{8} + 97080 x^{7} - 6948 x^{6} + 118692 x^{5} - 886104 x^{4} + 575880 x^{3} + 504812 x^{2} - 353496 x - 20956 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6584630745307392888012800000000000=2^{28}\cdot 5^{11}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{2} a^{16}$, $\frac{1}{2} a^{17}$, $\frac{1}{2} a^{18}$, $\frac{1}{14806677953052088608398717374864206907441399122493025086} a^{19} - \frac{2041780578024701928540024904257712592609992503876839713}{14806677953052088608398717374864206907441399122493025086} a^{18} + \frac{1034751781483538011992662207136796727740812041390058709}{7403338976526044304199358687432103453720699561246512543} a^{17} + \frac{954604402879545151929000938628788092978512378111274033}{14806677953052088608398717374864206907441399122493025086} a^{16} - \frac{3253516480946335243525151996431447336759581423123164555}{14806677953052088608398717374864206907441399122493025086} a^{15} - \frac{971597217559748091097161636451893086291541657231872023}{7403338976526044304199358687432103453720699561246512543} a^{14} + \frac{948287165411894251086134848908020953847670938758224303}{7403338976526044304199358687432103453720699561246512543} a^{13} + \frac{404530533275855516391309120842098828215396400912811619}{7403338976526044304199358687432103453720699561246512543} a^{12} + \frac{2751570844895564547486131975464979771397338525213772497}{14806677953052088608398717374864206907441399122493025086} a^{11} + \frac{2210828039991544313165901204410779913348569335846848285}{14806677953052088608398717374864206907441399122493025086} a^{10} - \frac{604631886016081427238372780018275302272575694464456829}{7403338976526044304199358687432103453720699561246512543} a^{9} - \frac{3678646514094774854053023029562162578536002796875296794}{7403338976526044304199358687432103453720699561246512543} a^{8} - \frac{1005971609642704202908063366744626476970966975582530074}{7403338976526044304199358687432103453720699561246512543} a^{7} + \frac{1477545754655669017349055648533262190475651054701754949}{7403338976526044304199358687432103453720699561246512543} a^{6} - \frac{3120752437185216758401776867781837867160336791271721877}{7403338976526044304199358687432103453720699561246512543} a^{5} + \frac{1520141851175033167620234488234235993013756522225055776}{7403338976526044304199358687432103453720699561246512543} a^{4} + \frac{904292912841157391245955431282805974783129939336391159}{7403338976526044304199358687432103453720699561246512543} a^{3} - \frac{687359202227462761730540630257716273579947009397152884}{7403338976526044304199358687432103453720699561246512543} a^{2} - \frac{943794150876262283020976342609326045232538927810083722}{7403338976526044304199358687432103453720699561246512543} a - \frac{250826887633935916638669795985313986189999672507253149}{569487613578926484938412206725546419516976889326654811}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6670883258.68 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n771 are not computed |
| Character table for t20n771 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3469 | Data not computed | ||||||