Normalized defining polynomial
\( x^{20} - 2 x^{19} - 28 x^{18} + 52 x^{17} + 180 x^{16} + 122 x^{15} - 1296 x^{14} - 2370 x^{13} + 4507 x^{12} + 8900 x^{11} - 534 x^{10} - 22878 x^{9} - 13201 x^{8} + 27386 x^{7} - 23540 x^{6} - 15414 x^{5} + 64907 x^{4} + 15882 x^{3} - 17440 x^{2} - 1098 x + 857 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6137624919604778598575554238087168=2^{30}\cdot 89417^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 89417$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{18123534422234252032651598578615895975433739093611} a^{19} - \frac{5201573345406828961743960651319514390621272454842}{18123534422234252032651598578615895975433739093611} a^{18} + \frac{6346336890614912941900657407723866325316549265134}{18123534422234252032651598578615895975433739093611} a^{17} + \frac{841600017709526289348329306555180890802547198506}{18123534422234252032651598578615895975433739093611} a^{16} - \frac{658237759916517409302964406702251816383236372176}{18123534422234252032651598578615895975433739093611} a^{15} - \frac{847631580174662705454014150195429242410875886653}{18123534422234252032651598578615895975433739093611} a^{14} + \frac{3625740290268135249771912952504745769696840390598}{18123534422234252032651598578615895975433739093611} a^{13} - \frac{5215765545595385928197700152211105774830023434557}{18123534422234252032651598578615895975433739093611} a^{12} + \frac{1828281896516000340004096526586981264794117236967}{18123534422234252032651598578615895975433739093611} a^{11} - \frac{7058494022026682806621632003300483131974710989450}{18123534422234252032651598578615895975433739093611} a^{10} - \frac{8556337845874527313763898852785344562592108877151}{18123534422234252032651598578615895975433739093611} a^{9} + \frac{214638901118546472892679171933292904157748311206}{18123534422234252032651598578615895975433739093611} a^{8} + \frac{13510153472716115371930843672797283288655366341}{49115269436949192500410836256411642209847531419} a^{7} - \frac{5130099108584433674935811916705190631716496555815}{18123534422234252032651598578615895975433739093611} a^{6} - \frac{1800045237993392273927913166083278882601726143032}{6041178140744750677550532859538631991811246364537} a^{5} - \frac{82556054402602085609465308079400541332778651845}{671242015638305630838948095504292443534582929393} a^{4} + \frac{1578388427673863369768442380441295226374029978300}{18123534422234252032651598578615895975433739093611} a^{3} - \frac{7647916267256010672321786387999459251141875791730}{18123534422234252032651598578615895975433739093611} a^{2} + \frac{8321961889011247468984870977752999558946159920248}{18123534422234252032651598578615895975433739093611} a - \frac{2051441105731376911756862138518363112401236829682}{18123534422234252032651598578615895975433739093611}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6048751032.52 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.5.89417.1, 10.10.8187289486336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 89417 | Data not computed | ||||||