Normalized defining polynomial
\( x^{20} - 4 x^{19} - 44 x^{18} + 300 x^{17} - 623 x^{16} - 208 x^{15} + 15368 x^{14} - 114296 x^{13} + 472819 x^{12} - 1418768 x^{11} + 3158862 x^{10} - 4604316 x^{9} + 2157922 x^{8} + 13116408 x^{7} - 44511864 x^{6} + 41666720 x^{5} + 60019076 x^{4} - 102874864 x^{3} - 53866648 x^{2} + 7202352 x + 3747704 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(612576255759573370734751264818904170496=2^{48}\cdot 31^{10}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{16} + \frac{1}{8} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{17} - \frac{1}{24} a^{16} + \frac{1}{24} a^{15} - \frac{1}{24} a^{14} - \frac{1}{24} a^{13} + \frac{1}{24} a^{12} + \frac{1}{12} a^{10} + \frac{1}{6} a^{8} + \frac{5}{12} a^{7} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{72} a^{18} - \frac{1}{24} a^{16} + \frac{1}{72} a^{14} - \frac{1}{12} a^{13} + \frac{1}{18} a^{12} + \frac{1}{9} a^{11} + \frac{1}{36} a^{10} + \frac{1}{18} a^{9} + \frac{7}{36} a^{8} + \frac{2}{9} a^{7} - \frac{1}{2} a^{6} + \frac{4}{9} a^{5} - \frac{1}{18} a^{4} + \frac{4}{9} a^{3} - \frac{2}{9} a^{2} - \frac{2}{9} a + \frac{1}{9}$, $\frac{1}{826090634717756481054360635016285951625526203545755179631836438335192} a^{19} - \frac{1269483540991860312961679629276393929700669862406880504948979552461}{413045317358878240527180317508142975812763101772877589815918219167596} a^{18} + \frac{4039516407837733079541176714126472028901746554763320610652066010215}{275363544905918827018120211672095317208508734515251726543945479445064} a^{17} - \frac{8616125588198378228872683200468051699022843086973566513958229873639}{275363544905918827018120211672095317208508734515251726543945479445064} a^{16} - \frac{24787093443539765115952474994304469841008318959878404031665241736781}{413045317358878240527180317508142975812763101772877589815918219167596} a^{15} - \frac{5470359987249254360335804909379078735693027415121961249246057310035}{206522658679439120263590158754071487906381550886438794907959109583798} a^{14} - \frac{91998655400104135519791337334073887666967630726511696946904003532445}{826090634717756481054360635016285951625526203545755179631836438335192} a^{13} + \frac{1736194653602736082320749863122417646937474935186199304519600893151}{15297974716995490389895567315116406511583818584180651474663637746948} a^{12} - \frac{55905888183389168101464371585986215962861168885289577148335962997517}{826090634717756481054360635016285951625526203545755179631836438335192} a^{11} - \frac{2906547679353400468634032528778902260774914514413186915349037260485}{30595949433990980779791134630232813023167637168361302949327275493896} a^{10} - \frac{7169163962617257965980010781509287917479880912524249429821363688195}{34420443113239853377265026459011914651063591814406465817993184930633} a^{9} - \frac{5171786252153684265951374704446528427012351208269411243224349830991}{68840886226479706754530052918023829302127183628812931635986369861266} a^{8} + \frac{42952375813038282270720247730306465972731993682404681813098823011055}{206522658679439120263590158754071487906381550886438794907959109583798} a^{7} + \frac{6718719048712272468689703784506252598126017257240689086004058134036}{103261329339719560131795079377035743953190775443219397453979554791899} a^{6} - \frac{32150835282341165480674217233887613586647641807116721791854105912921}{103261329339719560131795079377035743953190775443219397453979554791899} a^{5} - \frac{88272368344330017987807683154398681262130581449476599390041183468381}{206522658679439120263590158754071487906381550886438794907959109583798} a^{4} - \frac{37150208474048559726156115097848345908191656972011051340681726812917}{206522658679439120263590158754071487906381550886438794907959109583798} a^{3} + \frac{69353199052439372907679314585603899282768539296286753923242712190009}{206522658679439120263590158754071487906381550886438794907959109583798} a^{2} + \frac{43831894350847544861740365743900329169400172539490377858062099665778}{103261329339719560131795079377035743953190775443219397453979554791899} a + \frac{20684736105466417622401833644309932754503037558038083115779056941135}{103261329339719560131795079377035743953190775443219397453979554791899}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3106142973120 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | R | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.12.26.27 | $x^{12} - 2 x^{10} + 4 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | 12T48 | $[4/3, 4/3, 2, 3]_{3}^{2}$ | |
| 31 | Data not computed | ||||||
| 227 | Data not computed | ||||||