Normalized defining polynomial
\( x^{20} - 8 x^{19} - 10 x^{18} + 244 x^{17} - 944 x^{16} - 1944 x^{15} + 27942 x^{14} - 20368 x^{13} - 296034 x^{12} + 626076 x^{11} + 572560 x^{10} - 4641000 x^{9} + 9733290 x^{8} + 567192 x^{7} - 33430872 x^{6} + 51004208 x^{5} - 65906436 x^{4} + 87451344 x^{3} - 46599072 x^{2} + 533536 x + 63032 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(612576255759573370734751264818904170496=2^{48}\cdot 31^{10}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{18} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{123744470803851680485138522094642580994935144211737267589904978837862757827492} a^{19} - \frac{3176691081633753413394237605347499137148472839544873119763926928116746805967}{41248156934617226828379507364880860331645048070579089196634992945954252609164} a^{18} - \frac{3282766185232550459938876321602277574916484579245325990135522675444017567454}{30936117700962920121284630523660645248733786052934316897476244709465689456873} a^{17} + \frac{1911385476648328706412026904925216961774323441279867366599094567680589535041}{61872235401925840242569261047321290497467572105868633794952489418931378913746} a^{16} - \frac{6227450646183356078831050210689373901907393152234471954361386600692609322411}{61872235401925840242569261047321290497467572105868633794952489418931378913746} a^{15} - \frac{6584609456471276372813611382629467066037486367092446368416792728799202635739}{30936117700962920121284630523660645248733786052934316897476244709465689456873} a^{14} - \frac{10017776014013090661181068866070773555518169730188509585372390220399192579597}{61872235401925840242569261047321290497467572105868633794952489418931378913746} a^{13} + \frac{286498047703909167741839178192518062400703168580228301745098884266619677078}{10312039233654306707094876841220215082911262017644772299158748236488563152291} a^{12} - \frac{7684662556820626908154623219722174206588971549412952871099779757709506519625}{20624078467308613414189753682440430165822524035289544598317496472977126304582} a^{11} - \frac{6949488214031443067388136805147310048778550830767692026440966330495422698617}{20624078467308613414189753682440430165822524035289544598317496472977126304582} a^{10} + \frac{7237259565196739361072796059811903565363969597775443907797301366136348412968}{30936117700962920121284630523660645248733786052934316897476244709465689456873} a^{9} - \frac{2677388712112876420629884659896682807145209746744102103478174561009245350430}{30936117700962920121284630523660645248733786052934316897476244709465689456873} a^{8} + \frac{22021782986289358443421820787964030443647146017809877187969129339378891516427}{61872235401925840242569261047321290497467572105868633794952489418931378913746} a^{7} - \frac{15208464453815354518544425598342783918830038639032216411761516788127533369713}{61872235401925840242569261047321290497467572105868633794952489418931378913746} a^{6} - \frac{9905896507060382840292822117903403387304780664456917305888641004727527585808}{30936117700962920121284630523660645248733786052934316897476244709465689456873} a^{5} - \frac{468110290396331893605799791192054265616163932209821626894640202176203353859}{30936117700962920121284630523660645248733786052934316897476244709465689456873} a^{4} + \frac{1985724660053452295606395850447571715859205579864430381220728172003005866737}{30936117700962920121284630523660645248733786052934316897476244709465689456873} a^{3} + \frac{15295700018324850301694842407199280385140491712949462171431963103110910246907}{30936117700962920121284630523660645248733786052934316897476244709465689456873} a^{2} + \frac{14844707937936497654363912767020014290912418411715460451014369981864522734632}{30936117700962920121284630523660645248733786052934316897476244709465689456873} a - \frac{10914374917485156256024086189829133225944404114414002572335996762153897794053}{30936117700962920121284630523660645248733786052934316897476244709465689456873}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4873811636050 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.12.26.27 | $x^{12} - 2 x^{10} + 4 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | 12T48 | $[4/3, 4/3, 2, 3]_{3}^{2}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 31.10.5.1 | $x^{10} - 1922 x^{6} + 923521 x^{2} - 2862915100$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 227 | Data not computed | ||||||