Normalized defining polynomial
\( x^{20} - 10 x^{19} + 35 x^{18} - 30 x^{17} - 175 x^{16} + 788 x^{15} - 1355 x^{14} - 225 x^{13} + 5170 x^{12} - 8595 x^{11} + 4014 x^{10} + 5125 x^{9} - 8790 x^{8} + 4745 x^{7} + 255 x^{6} - 1553 x^{5} + 640 x^{4} + 25 x^{3} - 80 x^{2} + 15 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6077381409667160910797119140625=5^{17}\cdot 6029^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{8} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{10} + \frac{2}{5} a^{5} - \frac{2}{5}$, $\frac{1}{25} a^{16} + \frac{2}{25} a^{15} - \frac{4}{25} a^{11} - \frac{3}{25} a^{10} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{8}{25} a^{6} - \frac{1}{25} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{2} - \frac{7}{25} a + \frac{6}{25}$, $\frac{1}{25} a^{17} + \frac{1}{25} a^{15} + \frac{1}{25} a^{12} + \frac{6}{25} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{25} a^{7} - \frac{1}{5} a^{6} - \frac{3}{25} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{3}{25} a^{2} + \frac{8}{25}$, $\frac{1}{12266425} a^{18} - \frac{9}{12266425} a^{17} + \frac{149228}{12266425} a^{16} - \frac{6452}{66305} a^{15} - \frac{222217}{2453285} a^{14} - \frac{774189}{12266425} a^{13} - \frac{1052409}{12266425} a^{12} - \frac{6035442}{12266425} a^{11} + \frac{461678}{2453285} a^{10} - \frac{751443}{2453285} a^{9} - \frac{4520228}{12266425} a^{8} + \frac{4287962}{12266425} a^{7} - \frac{2465959}{12266425} a^{6} - \frac{2819}{490657} a^{5} - \frac{994172}{2453285} a^{4} + \frac{3627973}{12266425} a^{3} + \frac{3776383}{12266425} a^{2} - \frac{5371441}{12266425} a + \frac{474407}{2453285}$, $\frac{1}{12266425} a^{19} + \frac{4031}{331525} a^{17} + \frac{149432}{12266425} a^{16} + \frac{82552}{2453285} a^{15} - \frac{960814}{12266425} a^{14} - \frac{132051}{2453285} a^{13} - \frac{787413}{12266425} a^{12} - \frac{491603}{12266425} a^{11} - \frac{6188}{490657} a^{10} + \frac{917397}{12266425} a^{9} + \frac{1062351}{2453285} a^{8} - \frac{3126861}{12266425} a^{7} - \frac{184541}{12266425} a^{6} - \frac{139713}{2453285} a^{5} - \frac{1857207}{12266425} a^{4} + \frac{907087}{2453285} a^{3} + \frac{1629871}{12266425} a^{2} + \frac{641481}{12266425} a + \frac{344407}{2453285}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 149292590.811 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n797 are not computed |
| Character table for t20n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| 6029 | Data not computed | ||||||