Normalized defining polynomial
\( x^{20} - x^{19} - 4 x^{18} + 53 x^{17} - 180 x^{16} + x^{15} + 932 x^{14} - 3739 x^{13} + 4578 x^{12} + 5437 x^{11} - 12484 x^{10} + 13485 x^{9} - 5616 x^{8} - 19515 x^{7} + 17168 x^{6} + 6963 x^{5} - 6524 x^{4} - 1563 x^{3} + 924 x^{2} + 133 x - 53 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60656583790251750925293253033984=2^{24}\cdot 83^{5}\cdot 983^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{187542005877704884830544218806366869602712} a^{19} + \frac{18237006812561228428297558517926747823597}{93771002938852442415272109403183434801356} a^{18} + \frac{26386232327904139695693238375938143020765}{93771002938852442415272109403183434801356} a^{17} + \frac{87724492662695216717982005930854904288667}{187542005877704884830544218806366869602712} a^{16} - \frac{60001713778654264248401807352627782458051}{187542005877704884830544218806366869602712} a^{15} + \frac{252017385289321552950987000160853014826}{1378985337336065329636354550046815217667} a^{14} + \frac{22969877437003261829870562956804942084503}{46885501469426221207636054701591717400678} a^{13} - \frac{72634556446421520605563205628289928992687}{187542005877704884830544218806366869602712} a^{12} + \frac{86222573565052602932761112816708062954525}{187542005877704884830544218806366869602712} a^{11} - \frac{20759100635762580090173252805880652834331}{46885501469426221207636054701591717400678} a^{10} + \frac{198635420729109166722302026381874835396}{23442750734713110603818027350795858700339} a^{9} + \frac{75884536000424791774729569747039805304925}{187542005877704884830544218806366869602712} a^{8} + \frac{3636704062270659800006077858284808792871}{11031882698688522637090836400374521741336} a^{7} - \frac{13604504808192438929847854335619928561311}{93771002938852442415272109403183434801356} a^{6} + \frac{17575756034652623749957542986310817845271}{93771002938852442415272109403183434801356} a^{5} + \frac{65259406005238203273284434497212458132277}{187542005877704884830544218806366869602712} a^{4} - \frac{86115190329026017720189374782359174035205}{187542005877704884830544218806366869602712} a^{3} - \frac{9470827473553766928481880231060716491817}{93771002938852442415272109403183434801356} a^{2} + \frac{43562046948516014531424991732475157506055}{93771002938852442415272109403183434801356} a + \frac{33848424055971110777479248891497235750871}{187542005877704884830544218806366869602712}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 727316285.972 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||