Properties

Label 20.12.5834302965...2368.4
Degree $20$
Signature $[12, 4]$
Discriminant $2^{10}\cdot 19^{10}\cdot 43^{11}$
Root discriminant $48.79$
Ramified primes $2, 19, 43$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T423

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![15523, 0, -63726, 0, 64282, 0, 6176, 0, -25562, 0, 2798, 0, 3071, 0, -334, 0, -126, 0, 4, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 4*x^18 - 126*x^16 - 334*x^14 + 3071*x^12 + 2798*x^10 - 25562*x^8 + 6176*x^6 + 64282*x^4 - 63726*x^2 + 15523)
 
gp: K = bnfinit(x^20 + 4*x^18 - 126*x^16 - 334*x^14 + 3071*x^12 + 2798*x^10 - 25562*x^8 + 6176*x^6 + 64282*x^4 - 63726*x^2 + 15523, 1)
 

Normalized defining polynomial

\( x^{20} + 4 x^{18} - 126 x^{16} - 334 x^{14} + 3071 x^{12} + 2798 x^{10} - 25562 x^{8} + 6176 x^{6} + 64282 x^{4} - 63726 x^{2} + 15523 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5834302965409512291058019417402368=2^{10}\cdot 19^{10}\cdot 43^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $48.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 19, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{266} a^{14} + \frac{3}{38} a^{12} + \frac{1}{133} a^{10} - \frac{17}{266} a^{8} + \frac{9}{38} a^{6} - \frac{9}{266} a^{4} + \frac{43}{266} a^{2} + \frac{3}{14}$, $\frac{1}{532} a^{15} + \frac{3}{76} a^{13} - \frac{131}{532} a^{11} - \frac{1}{4} a^{10} + \frac{249}{532} a^{9} - \frac{1}{2} a^{8} - \frac{5}{38} a^{7} - \frac{1}{4} a^{6} - \frac{9}{532} a^{5} - \frac{1}{2} a^{4} + \frac{43}{532} a^{3} - \frac{1}{2} a^{2} + \frac{5}{14} a - \frac{1}{4}$, $\frac{1}{2660} a^{16} + \frac{1}{2660} a^{14} + \frac{13}{140} a^{12} - \frac{1}{4} a^{11} - \frac{31}{140} a^{10} - \frac{1}{2} a^{9} - \frac{53}{133} a^{8} - \frac{1}{4} a^{7} - \frac{471}{2660} a^{6} - \frac{1}{2} a^{5} - \frac{309}{2660} a^{4} - \frac{1}{2} a^{3} + \frac{298}{665} a^{2} - \frac{1}{4} a + \frac{19}{70}$, $\frac{1}{2660} a^{17} + \frac{1}{2660} a^{15} + \frac{13}{140} a^{13} - \frac{1}{4} a^{12} - \frac{31}{140} a^{11} - \frac{53}{133} a^{9} - \frac{1}{4} a^{8} - \frac{471}{2660} a^{7} - \frac{309}{2660} a^{5} - \frac{1}{2} a^{4} + \frac{298}{665} a^{3} - \frac{1}{4} a^{2} + \frac{19}{70} a - \frac{1}{2}$, $\frac{1}{2507121123848740} a^{18} + \frac{64466556553}{358160160549820} a^{16} - \frac{58675750547}{131953743360460} a^{14} - \frac{1}{4} a^{13} - \frac{431002250861689}{2507121123848740} a^{12} + \frac{1403250714917}{17908008027491} a^{10} - \frac{1}{4} a^{9} + \frac{1001601739783839}{2507121123848740} a^{8} - \frac{132900138170099}{2507121123848740} a^{6} - \frac{1}{2} a^{5} - \frac{44627212060527}{626780280962185} a^{4} - \frac{1}{4} a^{3} + \frac{2995884171524}{89540040137455} a^{2} - \frac{1}{2} a - \frac{298444595179}{942526738289}$, $\frac{1}{47635301353126060} a^{19} - \frac{5203894533863}{47635301353126060} a^{17} + \frac{1841975346052}{11908825338281515} a^{15} - \frac{1}{532} a^{14} + \frac{870827823313132}{11908825338281515} a^{13} + \frac{4}{19} a^{12} + \frac{2928840114388191}{47635301353126060} a^{11} - \frac{1}{266} a^{10} - \frac{4770279913989313}{23817650676563030} a^{9} + \frac{75}{266} a^{8} - \frac{3452476215966877}{9527060270625212} a^{7} - \frac{9}{76} a^{6} + \frac{11470179110271643}{47635301353126060} a^{5} + \frac{9}{532} a^{4} - \frac{11063378976941331}{47635301353126060} a^{3} - \frac{44}{133} a^{2} + \frac{218588436572962}{626780280962185} a - \frac{3}{28}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6312085310.69 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T423:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 10240
The 160 conjugacy class representatives for t20n423 are not computed
Character table for t20n423 is not computed

Intermediate fields

\(\Q(\sqrt{817}) \), 5.5.667489.1 x5, 10.10.364007458703857.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.5.0.1$x^{5} + x^{2} + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
2.5.0.1$x^{5} + x^{2} + 1$$1$$5$$0$$C_5$$[\ ]^{5}$
2.10.10.13$x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2, 2]^{5}$
$19$19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$43$43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.2$x^{2} + 387$$2$$1$$1$$C_2$$[\ ]_{2}$
43.4.3.1$x^{4} + 387$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$