Normalized defining polynomial
\( x^{20} - 8 x^{19} + 23 x^{18} - 28 x^{17} - 147 x^{16} + 1401 x^{15} - 4324 x^{14} + 4404 x^{13} + 4324 x^{12} - 15674 x^{11} + 18559 x^{10} - 14075 x^{9} + 10908 x^{8} + 10703 x^{7} - 60667 x^{6} + 43458 x^{5} + 8721 x^{4} + 10775 x^{3} - 4300 x^{2} - 2500 x + 625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5834302965409512291058019417402368=2^{10}\cdot 19^{10}\cdot 43^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{65} a^{16} - \frac{6}{65} a^{15} + \frac{21}{65} a^{14} + \frac{14}{65} a^{13} + \frac{2}{5} a^{12} - \frac{22}{65} a^{11} + \frac{2}{65} a^{10} - \frac{2}{65} a^{9} + \frac{6}{13} a^{8} + \frac{31}{65} a^{7} + \frac{21}{65} a^{6} + \frac{32}{65} a^{5} - \frac{1}{5} a^{4} + \frac{17}{65} a^{3} + \frac{2}{65} a^{2} + \frac{32}{65} a + \frac{2}{13}$, $\frac{1}{65} a^{17} - \frac{3}{13} a^{15} + \frac{2}{13} a^{14} - \frac{4}{13} a^{13} + \frac{4}{65} a^{12} + \frac{2}{13} a^{10} + \frac{18}{65} a^{9} + \frac{16}{65} a^{8} + \frac{12}{65} a^{7} + \frac{28}{65} a^{6} - \frac{16}{65} a^{5} + \frac{4}{65} a^{4} - \frac{2}{5} a^{3} - \frac{21}{65} a^{2} + \frac{7}{65} a - \frac{1}{13}$, $\frac{1}{1625} a^{18} - \frac{8}{1625} a^{17} - \frac{2}{1625} a^{16} + \frac{44}{125} a^{15} + \frac{628}{1625} a^{14} - \frac{499}{1625} a^{13} - \frac{799}{1625} a^{12} - \frac{471}{1625} a^{11} - \frac{751}{1625} a^{10} - \frac{349}{1625} a^{9} + \frac{534}{1625} a^{8} + \frac{16}{65} a^{7} - \frac{292}{1625} a^{6} + \frac{353}{1625} a^{5} + \frac{683}{1625} a^{4} - \frac{567}{1625} a^{3} + \frac{71}{1625} a^{2} - \frac{6}{13} a - \frac{1}{65}$, $\frac{1}{37598313255771286400091256813994918125} a^{19} + \frac{8900638902718255272444577736145277}{37598313255771286400091256813994918125} a^{18} - \frac{133115678314323275702426666822637982}{37598313255771286400091256813994918125} a^{17} + \frac{211212416086683215022974238421612702}{37598313255771286400091256813994918125} a^{16} - \frac{14655479674198061474059383384452270677}{37598313255771286400091256813994918125} a^{15} + \frac{3149054843076551213733787789221255056}{37598313255771286400091256813994918125} a^{14} + \frac{15881207436941144262380764888948260661}{37598313255771286400091256813994918125} a^{13} + \frac{16039935289462367857337462282299530964}{37598313255771286400091256813994918125} a^{12} + \frac{18374707384695072581529982417907096239}{37598313255771286400091256813994918125} a^{11} - \frac{13789342024042067463417036297336368859}{37598313255771286400091256813994918125} a^{10} - \frac{10887312389379722782765240873233739556}{37598313255771286400091256813994918125} a^{9} - \frac{286681257046649321036089525240696694}{578435588550327483078327027907614125} a^{8} + \frac{3207696044190250132535752454116090883}{37598313255771286400091256813994918125} a^{7} + \frac{9635729686338801970958914456916751858}{37598313255771286400091256813994918125} a^{6} - \frac{5507760440947875182432876535923904612}{37598313255771286400091256813994918125} a^{5} - \frac{13001758079723633734876476496634670937}{37598313255771286400091256813994918125} a^{4} - \frac{4234419697202658980596862366539387424}{37598313255771286400091256813994918125} a^{3} - \frac{1230279003654288412498081745512484458}{7519662651154257280018251362798983625} a^{2} + \frac{113247041797155988435777795323909319}{1503932530230851456003650272559796725} a - \frac{120491026307764821716452567360712462}{300786506046170291200730054511959345}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5540823478.02 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 160 conjugacy class representatives for t20n423 are not computed |
| Character table for t20n423 is not computed |
Intermediate fields
| \(\Q(\sqrt{817}) \), 5.5.667489.1 x5, 10.10.364007458703857.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 2.10.10.9 | $x^{10} - 15 x^{8} + 38 x^{6} - 18 x^{4} + 25 x^{2} - 63$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $43$ | 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.3.1 | $x^{4} + 387$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |