Normalized defining polynomial
\( x^{20} - 3 x^{19} - 34 x^{18} + 78 x^{17} + 374 x^{16} - 656 x^{15} - 1014 x^{14} + 3385 x^{13} - 4905 x^{12} - 28802 x^{11} + 24342 x^{10} + 191138 x^{9} + 6059 x^{8} - 554727 x^{7} - 306540 x^{6} + 910323 x^{5} + 462455 x^{4} - 744664 x^{3} + 5818 x^{2} + 166564 x - 167289 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(569045856917786506070759387613895321=67^{6}\cdot 97^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{16} - \frac{1}{6} a^{15} + \frac{1}{6} a^{14} + \frac{1}{3} a^{13} - \frac{1}{6} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{3} a^{9} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a$, $\frac{1}{6} a^{17} - \frac{1}{2} a^{14} + \frac{1}{6} a^{13} + \frac{1}{3} a^{12} + \frac{1}{6} a^{10} - \frac{1}{3} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a$, $\frac{1}{414} a^{18} - \frac{7}{207} a^{17} - \frac{13}{207} a^{16} - \frac{38}{207} a^{15} + \frac{19}{207} a^{14} - \frac{121}{414} a^{13} - \frac{28}{207} a^{12} - \frac{34}{207} a^{11} - \frac{121}{414} a^{10} + \frac{26}{207} a^{9} - \frac{19}{46} a^{8} + \frac{9}{23} a^{7} - \frac{151}{414} a^{6} - \frac{8}{207} a^{5} - \frac{107}{414} a^{4} + \frac{1}{3} a^{3} + \frac{5}{46} a^{2} + \frac{179}{414} a + \frac{59}{138}$, $\frac{1}{2216077483708640193391044311679620635760047152145331658} a^{19} + \frac{588909793631879715389719706099726075861299006058597}{738692494569546731130348103893206878586682384048443886} a^{18} + \frac{31685721987531355953114998414658090114007947979670441}{738692494569546731130348103893206878586682384048443886} a^{17} - \frac{31576810019214156976914596189574719939187826829479583}{2216077483708640193391044311679620635760047152145331658} a^{16} - \frac{165431803770423843247589678269719090402477904123701049}{738692494569546731130348103893206878586682384048443886} a^{15} - \frac{149669201928561826183374011304533757036494796227712325}{738692494569546731130348103893206878586682384048443886} a^{14} + \frac{333941910154708238134042545112555911415752833666119834}{1108038741854320096695522155839810317880023576072665829} a^{13} + \frac{189017548214269974235994790467417973560704661474580311}{738692494569546731130348103893206878586682384048443886} a^{12} - \frac{307967224039311093357229896049862194974517090685842507}{1108038741854320096695522155839810317880023576072665829} a^{11} + \frac{767778858909828159010277016101919014071092256852095851}{2216077483708640193391044311679620635760047152145331658} a^{10} - \frac{464522239294575899060036529690329505216943554975923239}{2216077483708640193391044311679620635760047152145331658} a^{9} + \frac{20737833942978957383773827251145021326047801465691849}{369346247284773365565174051946603439293341192024221943} a^{8} - \frac{496247584856369008073157128910096571358820370746230521}{2216077483708640193391044311679620635760047152145331658} a^{7} + \frac{62778371249336840899417028766595121772291054783841503}{246230831523182243710116034631068959528894128016147962} a^{6} - \frac{503617308262628290147493990158657325256345076816433155}{2216077483708640193391044311679620635760047152145331658} a^{5} - \frac{879075060852101663233916597118056209159362644752512421}{2216077483708640193391044311679620635760047152145331658} a^{4} - \frac{53054437510045397281091529043400591739119462344061495}{369346247284773365565174051946603439293341192024221943} a^{3} + \frac{653378462267005916199654879796631978326035793059766439}{2216077483708640193391044311679620635760047152145331658} a^{2} + \frac{530571218786188653408334366691824840879727972157118952}{1108038741854320096695522155839810317880023576072665829} a - \frac{307040080331204613046851143854092110832622746589546457}{738692494569546731130348103893206878586682384048443886}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 100647313468 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n324 |
| Character table for t20n324 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.116071900626889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||