Normalized defining polynomial
\( x^{20} - 40 x^{18} - 16 x^{17} + 587 x^{16} + 400 x^{15} - 3874 x^{14} - 3156 x^{13} + 11528 x^{12} + 7340 x^{11} - 16672 x^{10} + 11480 x^{9} + 52793 x^{8} - 8592 x^{7} - 94656 x^{6} - 35332 x^{5} + 52202 x^{4} + 19460 x^{3} + 140 x^{2} + 5376 x + 1423 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(52744039446596112351232000000000000=2^{40}\cdot 5^{12}\cdot 97\cdot 1193^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 97, 1193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{16} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{696896855545530727683606569360695941759529244} a^{19} - \frac{21980989739246964581562947686183432011428489}{696896855545530727683606569360695941759529244} a^{18} + \frac{206554054399712202011518051424125191188334305}{696896855545530727683606569360695941759529244} a^{17} - \frac{95467855800035218925022250153506355352916269}{696896855545530727683606569360695941759529244} a^{16} + \frac{2474241913106947453889178919458924609823310}{24889173412340383131557377477167712205697473} a^{15} + \frac{61187399482150067169453025714735884252655547}{174224213886382681920901642340173985439882311} a^{14} + \frac{92382660090546954736763398265769588584280201}{348448427772765363841803284680347970879764622} a^{13} + \frac{6572489036655679323775871617786681578005367}{348448427772765363841803284680347970879764622} a^{12} - \frac{159036671342549139607822487715862100116899261}{348448427772765363841803284680347970879764622} a^{11} - \frac{27820326915074798722407818192682015365536157}{348448427772765363841803284680347970879764622} a^{10} + \frac{20275553621091531726610356778004638018637357}{348448427772765363841803284680347970879764622} a^{9} + \frac{161915036592372071178743419675252161961535069}{348448427772765363841803284680347970879764622} a^{8} + \frac{186904222000569607758057959962401017062082483}{696896855545530727683606569360695941759529244} a^{7} - \frac{43223820774293883280611490890067478951551185}{99556693649361532526229509908670848822789892} a^{6} + \frac{103015772266849817793781436431037637187674351}{696896855545530727683606569360695941759529244} a^{5} - \frac{42892379387213350317679855048545454498284607}{696896855545530727683606569360695941759529244} a^{4} + \frac{110907218715539591543447560807797538640196337}{696896855545530727683606569360695941759529244} a^{3} - \frac{305919527770924389541687364503581502837538413}{696896855545530727683606569360695941759529244} a^{2} - \frac{12121892493127137724365272386769566594356611}{696896855545530727683606569360695941759529244} a - \frac{30718472271020744046307715835873428240212505}{696896855545530727683606569360695941759529244}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23810938178.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 409600 |
| The 190 conjugacy class representatives for t20n925 are not computed |
| Character table for t20n925 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.728703488000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 97 | Data not computed | ||||||
| 1193 | Data not computed | ||||||