Normalized defining polynomial
\( x^{20} - 5 x^{19} - 7 x^{18} + 81 x^{17} - 154 x^{16} - 59 x^{15} + 865 x^{14} - 1801 x^{13} + 1946 x^{12} - 3044 x^{11} + 3964 x^{10} + 6585 x^{9} - 38706 x^{8} + 93977 x^{7} - 126246 x^{6} + 63394 x^{5} + 22620 x^{4} - 26258 x^{3} + 4745 x^{2} - 250 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5001984585680627954608248429847552=2^{10}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} + \frac{1}{11} a^{17} + \frac{1}{11} a^{16} + \frac{1}{11} a^{15} - \frac{3}{11} a^{14} + \frac{2}{11} a^{13} + \frac{2}{11} a^{12} - \frac{3}{11} a^{11} - \frac{4}{11} a^{10} - \frac{5}{11} a^{9} - \frac{1}{11} a^{8} + \frac{2}{11} a^{7} + \frac{2}{11} a^{6} - \frac{2}{11} a^{5} + \frac{4}{11} a^{4} - \frac{1}{11} a^{3} - \frac{5}{11} a^{2} + \frac{5}{11}$, $\frac{1}{25370974346093648348602453027789892041289} a^{19} + \frac{427084678571375604100228952587902996448}{25370974346093648348602453027789892041289} a^{18} - \frac{1659429807222865804771600688516388857716}{25370974346093648348602453027789892041289} a^{17} - \frac{4868523888968951793017196048374629856832}{25370974346093648348602453027789892041289} a^{16} + \frac{8023333133068306071777039482012913925983}{25370974346093648348602453027789892041289} a^{15} - \frac{85833600312503950218099853299590392523}{209677473934658250814896306014792496209} a^{14} - \frac{12066257150785317989924988714275878178571}{25370974346093648348602453027789892041289} a^{13} + \frac{7453964384025718650484620694220631692520}{25370974346093648348602453027789892041289} a^{12} - \frac{6337669037749313381288974813645304992284}{25370974346093648348602453027789892041289} a^{11} - \frac{9914254018026328505940527300154237847183}{25370974346093648348602453027789892041289} a^{10} - \frac{3103786738023187348185036093102204831495}{25370974346093648348602453027789892041289} a^{9} - \frac{10197467377870023789728453218091577365777}{25370974346093648348602453027789892041289} a^{8} + \frac{7289320341259859067572387428655494392618}{25370974346093648348602453027789892041289} a^{7} - \frac{8852182578963811798926729688517444976036}{25370974346093648348602453027789892041289} a^{6} - \frac{7363460067957807819049907191947530429166}{25370974346093648348602453027789892041289} a^{5} + \frac{503162656905728365443469058539711896576}{25370974346093648348602453027789892041289} a^{4} - \frac{11589445329178786088707039087819876313061}{25370974346093648348602453027789892041289} a^{3} - \frac{7697468098747963825164811067674364551098}{25370974346093648348602453027789892041289} a^{2} + \frac{5954277727157212450165096688560995487925}{25370974346093648348602453027789892041289} a - \frac{11137341066052662292245567525199147477359}{25370974346093648348602453027789892041289}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4299430043.63 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for t20n674 are not computed |
| Character table for t20n674 is not computed |
Intermediate fields
| 10.10.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||