Normalized defining polynomial
\( x^{20} - 5 x^{19} - x^{18} + 26 x^{17} - 180 x^{16} - 38 x^{15} + 1186 x^{14} - 383 x^{13} + 7 x^{12} + 18807 x^{11} + 8970 x^{10} - 65860 x^{9} - 30856 x^{8} + 89240 x^{7} + 35468 x^{6} - 51048 x^{5} - 33951 x^{4} + 30103 x^{3} + 2369 x^{2} - 4465 x + 671 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5001984585680627954608248429847552=2^{10}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{47} a^{18} - \frac{21}{47} a^{17} - \frac{4}{47} a^{16} + \frac{18}{47} a^{15} - \frac{5}{47} a^{14} + \frac{3}{47} a^{13} + \frac{13}{47} a^{12} - \frac{10}{47} a^{11} - \frac{10}{47} a^{10} - \frac{15}{47} a^{9} + \frac{4}{47} a^{8} - \frac{21}{47} a^{7} - \frac{10}{47} a^{6} - \frac{19}{47} a^{5} + \frac{11}{47} a^{4} + \frac{8}{47} a^{3} - \frac{20}{47} a^{2} - \frac{19}{47} a + \frac{6}{47}$, $\frac{1}{3748154251275648862574020715943747130477601} a^{19} + \frac{8646644820422515466468037202128319049921}{3748154251275648862574020715943747130477601} a^{18} - \frac{156837235212552251119177213319695856708145}{3748154251275648862574020715943747130477601} a^{17} + \frac{307301528773236921346464397686685630084798}{3748154251275648862574020715943747130477601} a^{16} + \frac{1417628599901943747992020529862360962354278}{3748154251275648862574020715943747130477601} a^{15} + \frac{932246563659929192206995202655989998701945}{3748154251275648862574020715943747130477601} a^{14} - \frac{684316302444476131180856244430147811315910}{3748154251275648862574020715943747130477601} a^{13} + \frac{1319139137112235631335360625181560858726079}{3748154251275648862574020715943747130477601} a^{12} - \frac{762705853655253336041806859050556340390315}{3748154251275648862574020715943747130477601} a^{11} + \frac{1549728565112286360114734015424143657415429}{3748154251275648862574020715943747130477601} a^{10} + \frac{583809376205346053400842914755149292237332}{3748154251275648862574020715943747130477601} a^{9} - \frac{844069926533761733675010587155951424602518}{3748154251275648862574020715943747130477601} a^{8} - \frac{1405741305216538868038544836628727802629396}{3748154251275648862574020715943747130477601} a^{7} - \frac{655150050067601388288695716216084113944267}{3748154251275648862574020715943747130477601} a^{6} + \frac{650908405886246460198196933538822188245493}{3748154251275648862574020715943747130477601} a^{5} - \frac{293436908810924235882012892928933983670903}{3748154251275648862574020715943747130477601} a^{4} + \frac{942553837486118311775502482790669857672218}{3748154251275648862574020715943747130477601} a^{3} - \frac{1329318596786938299371480772902654533908777}{3748154251275648862574020715943747130477601} a^{2} + \frac{1329610461554467013737576292524163936232083}{3748154251275648862574020715943747130477601} a - \frac{470241602147811884482180627359577988307434}{3748154251275648862574020715943747130477601}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2424589430.15 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for t20n674 are not computed |
| Character table for t20n674 is not computed |
Intermediate fields
| 10.10.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||