Normalized defining polynomial
\( x^{20} - 23 x^{18} - 41 x^{17} + 147 x^{16} + 583 x^{15} + 340 x^{14} - 850 x^{13} - 2005 x^{12} - 10804 x^{11} - 32423 x^{10} - 17447 x^{9} + 72190 x^{8} + 102754 x^{7} + 169795 x^{6} + 477666 x^{5} + 139788 x^{4} - 855591 x^{3} - 621324 x^{2} + 306302 x + 273967 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5001984585680627954608248429847552=2^{10}\cdot 61^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3905184461236314729916880261648688158782195678403785} a^{19} - \frac{242636805004667067774901713953587377221986683031164}{3905184461236314729916880261648688158782195678403785} a^{18} - \frac{140743588415429989607416112624463130979181238531202}{355016769203301339083352751058971650798381425309435} a^{17} + \frac{1223564783037810907130785365008193738694797819356982}{3905184461236314729916880261648688158782195678403785} a^{16} + \frac{474335825466207226167235003720481142736410605160259}{3905184461236314729916880261648688158782195678403785} a^{15} + \frac{1560273208376024190555686036343974890430331327686372}{3905184461236314729916880261648688158782195678403785} a^{14} + \frac{955440660076594910615797845032447523071887530182137}{3905184461236314729916880261648688158782195678403785} a^{13} + \frac{1346945072980767859055940465938434113695237637339817}{3905184461236314729916880261648688158782195678403785} a^{12} - \frac{62181459848633442892230184071623082698550766160148}{355016769203301339083352751058971650798381425309435} a^{11} - \frac{1337684541092253631741660917904178917530547365646782}{3905184461236314729916880261648688158782195678403785} a^{10} + \frac{124660207526219906038634051810644231163962165792439}{781036892247262945983376052329737631756439135680757} a^{9} + \frac{1427850638457937311563221416077345903849661556018288}{3905184461236314729916880261648688158782195678403785} a^{8} - \frac{1730556455340309712190698148158618999220844241227272}{3905184461236314729916880261648688158782195678403785} a^{7} - \frac{463495931516205377548295491621483200215003647540888}{3905184461236314729916880261648688158782195678403785} a^{6} + \frac{5298180855374962472170028512529522496527978732033}{26209291686149763288032753433883813146189232740965} a^{5} - \frac{755305141900829237453717826236222468316703350530762}{3905184461236314729916880261648688158782195678403785} a^{4} + \frac{1010877698790942726952989382642275038185560447783891}{3905184461236314729916880261648688158782195678403785} a^{3} - \frac{361098542863606967795773602373658296280940957008392}{781036892247262945983376052329737631756439135680757} a^{2} + \frac{242609798289108629619178562454118853844091857874261}{3905184461236314729916880261648688158782195678403785} a + \frac{1427564243241503425717200547525963193195845771476368}{3905184461236314729916880261648688158782195678403785}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5331680480.93 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 74 conjugacy class representatives for t20n674 are not computed |
| Character table for t20n674 is not computed |
Intermediate fields
| 10.10.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||