Properties

Label 20.12.493...664.1
Degree $20$
Signature $[12, 4]$
Discriminant $4.934\times 10^{25}$
Root discriminant \(19.26\)
Ramified primes $2,11$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2\wr C_5$ (as 20T41)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 8*x^19 + 26*x^18 - 40*x^17 + 14*x^16 + 76*x^15 - 296*x^14 + 658*x^13 - 577*x^12 - 362*x^11 + 906*x^10 - 866*x^9 + 2214*x^8 - 3458*x^7 + 1784*x^6 + 564*x^5 - 1042*x^4 + 542*x^3 - 158*x^2 + 22*x - 1)
 
gp: K = bnfinit(y^20 - 8*y^19 + 26*y^18 - 40*y^17 + 14*y^16 + 76*y^15 - 296*y^14 + 658*y^13 - 577*y^12 - 362*y^11 + 906*y^10 - 866*y^9 + 2214*y^8 - 3458*y^7 + 1784*y^6 + 564*y^5 - 1042*y^4 + 542*y^3 - 158*y^2 + 22*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 8*x^19 + 26*x^18 - 40*x^17 + 14*x^16 + 76*x^15 - 296*x^14 + 658*x^13 - 577*x^12 - 362*x^11 + 906*x^10 - 866*x^9 + 2214*x^8 - 3458*x^7 + 1784*x^6 + 564*x^5 - 1042*x^4 + 542*x^3 - 158*x^2 + 22*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 8*x^19 + 26*x^18 - 40*x^17 + 14*x^16 + 76*x^15 - 296*x^14 + 658*x^13 - 577*x^12 - 362*x^11 + 906*x^10 - 866*x^9 + 2214*x^8 - 3458*x^7 + 1784*x^6 + 564*x^5 - 1042*x^4 + 542*x^3 - 158*x^2 + 22*x - 1)
 

\( x^{20} - 8 x^{19} + 26 x^{18} - 40 x^{17} + 14 x^{16} + 76 x^{15} - 296 x^{14} + 658 x^{13} - 577 x^{12} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[12, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(49338146756019243307761664\) \(\medspace = 2^{30}\cdot 11^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(19.26\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{31/16}11^{4/5}\approx 26.08313353110776$
Ramified primes:   \(2\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{28\!\cdots\!59}a^{19}-\frac{790872066861048}{28\!\cdots\!59}a^{18}+\frac{75\!\cdots\!10}{28\!\cdots\!59}a^{17}-\frac{13\!\cdots\!24}{28\!\cdots\!59}a^{16}-\frac{94\!\cdots\!26}{28\!\cdots\!59}a^{15}-\frac{12\!\cdots\!05}{28\!\cdots\!59}a^{14}+\frac{66\!\cdots\!46}{28\!\cdots\!59}a^{13}-\frac{86\!\cdots\!92}{28\!\cdots\!59}a^{12}-\frac{788109571468196}{28\!\cdots\!59}a^{11}+\frac{13\!\cdots\!40}{28\!\cdots\!59}a^{10}-\frac{16\!\cdots\!58}{28\!\cdots\!59}a^{9}+\frac{13\!\cdots\!29}{28\!\cdots\!59}a^{8}-\frac{26\!\cdots\!90}{28\!\cdots\!59}a^{7}-\frac{11\!\cdots\!91}{28\!\cdots\!59}a^{6}-\frac{12\!\cdots\!22}{28\!\cdots\!59}a^{5}-\frac{22\!\cdots\!65}{28\!\cdots\!59}a^{4}-\frac{33\!\cdots\!24}{28\!\cdots\!59}a^{3}+\frac{11\!\cdots\!43}{28\!\cdots\!59}a^{2}+\frac{12\!\cdots\!97}{28\!\cdots\!59}a+\frac{19\!\cdots\!04}{28\!\cdots\!59}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{32\!\cdots\!73}{28\!\cdots\!59}a^{19}-\frac{21\!\cdots\!66}{28\!\cdots\!59}a^{18}+\frac{51\!\cdots\!98}{28\!\cdots\!59}a^{17}-\frac{46\!\cdots\!60}{28\!\cdots\!59}a^{16}-\frac{34\!\cdots\!29}{28\!\cdots\!59}a^{15}+\frac{19\!\cdots\!49}{28\!\cdots\!59}a^{14}-\frac{64\!\cdots\!25}{28\!\cdots\!59}a^{13}+\frac{11\!\cdots\!36}{28\!\cdots\!59}a^{12}-\frac{62\!\cdots\!83}{28\!\cdots\!59}a^{11}-\frac{14\!\cdots\!27}{28\!\cdots\!59}a^{10}+\frac{71\!\cdots\!58}{28\!\cdots\!59}a^{9}-\frac{15\!\cdots\!50}{28\!\cdots\!59}a^{8}+\frac{47\!\cdots\!97}{28\!\cdots\!59}a^{7}-\frac{35\!\cdots\!27}{28\!\cdots\!59}a^{6}-\frac{44\!\cdots\!80}{28\!\cdots\!59}a^{5}+\frac{15\!\cdots\!65}{28\!\cdots\!59}a^{4}-\frac{84\!\cdots\!27}{28\!\cdots\!59}a^{3}+\frac{24\!\cdots\!23}{28\!\cdots\!59}a^{2}-\frac{29\!\cdots\!13}{28\!\cdots\!59}a+\frac{89\!\cdots\!46}{28\!\cdots\!59}$, $\frac{40\!\cdots\!90}{28\!\cdots\!59}a^{19}-\frac{26\!\cdots\!12}{28\!\cdots\!59}a^{18}+\frac{66\!\cdots\!16}{28\!\cdots\!59}a^{17}-\frac{65\!\cdots\!12}{28\!\cdots\!59}a^{16}-\frac{36\!\cdots\!91}{28\!\cdots\!59}a^{15}+\frac{25\!\cdots\!90}{28\!\cdots\!59}a^{14}-\frac{83\!\cdots\!55}{28\!\cdots\!59}a^{13}+\frac{14\!\cdots\!94}{28\!\cdots\!59}a^{12}-\frac{23\!\cdots\!92}{28\!\cdots\!59}a^{11}-\frac{17\!\cdots\!24}{28\!\cdots\!59}a^{10}+\frac{11\!\cdots\!57}{28\!\cdots\!59}a^{9}-\frac{19\!\cdots\!07}{28\!\cdots\!59}a^{8}+\frac{61\!\cdots\!57}{28\!\cdots\!59}a^{7}-\frac{51\!\cdots\!89}{28\!\cdots\!59}a^{6}-\frac{69\!\cdots\!65}{28\!\cdots\!59}a^{5}+\frac{20\!\cdots\!10}{28\!\cdots\!59}a^{4}-\frac{12\!\cdots\!01}{28\!\cdots\!59}a^{3}+\frac{41\!\cdots\!84}{28\!\cdots\!59}a^{2}-\frac{64\!\cdots\!95}{28\!\cdots\!59}a+\frac{32\!\cdots\!22}{28\!\cdots\!59}$, $\frac{62\!\cdots\!60}{28\!\cdots\!59}a^{19}-\frac{40\!\cdots\!88}{28\!\cdots\!59}a^{18}+\frac{10\!\cdots\!19}{28\!\cdots\!59}a^{17}-\frac{99\!\cdots\!93}{28\!\cdots\!59}a^{16}-\frac{57\!\cdots\!67}{28\!\cdots\!59}a^{15}+\frac{38\!\cdots\!49}{28\!\cdots\!59}a^{14}-\frac{12\!\cdots\!15}{28\!\cdots\!59}a^{13}+\frac{22\!\cdots\!48}{28\!\cdots\!59}a^{12}-\frac{33\!\cdots\!60}{28\!\cdots\!59}a^{11}-\frac{27\!\cdots\!10}{28\!\cdots\!59}a^{10}+\frac{16\!\cdots\!96}{28\!\cdots\!59}a^{9}-\frac{29\!\cdots\!04}{28\!\cdots\!59}a^{8}+\frac{93\!\cdots\!28}{28\!\cdots\!59}a^{7}-\frac{77\!\cdots\!71}{28\!\cdots\!59}a^{6}-\frac{21\!\cdots\!19}{28\!\cdots\!59}a^{5}+\frac{31\!\cdots\!31}{28\!\cdots\!59}a^{4}-\frac{19\!\cdots\!90}{28\!\cdots\!59}a^{3}+\frac{60\!\cdots\!07}{28\!\cdots\!59}a^{2}-\frac{89\!\cdots\!19}{28\!\cdots\!59}a+\frac{38\!\cdots\!87}{28\!\cdots\!59}$, $\frac{53\!\cdots\!51}{28\!\cdots\!59}a^{19}-\frac{32\!\cdots\!04}{28\!\cdots\!59}a^{18}+\frac{73\!\cdots\!50}{28\!\cdots\!59}a^{17}-\frac{51\!\cdots\!05}{28\!\cdots\!59}a^{16}-\frac{80\!\cdots\!54}{28\!\cdots\!59}a^{15}+\frac{30\!\cdots\!61}{28\!\cdots\!59}a^{14}-\frac{95\!\cdots\!45}{28\!\cdots\!59}a^{13}+\frac{14\!\cdots\!71}{28\!\cdots\!59}a^{12}+\frac{45\!\cdots\!69}{28\!\cdots\!59}a^{11}-\frac{23\!\cdots\!14}{28\!\cdots\!59}a^{10}+\frac{39\!\cdots\!50}{28\!\cdots\!59}a^{9}-\frac{20\!\cdots\!15}{28\!\cdots\!59}a^{8}+\frac{71\!\cdots\!44}{28\!\cdots\!59}a^{7}-\frac{34\!\cdots\!38}{28\!\cdots\!59}a^{6}-\frac{26\!\cdots\!49}{28\!\cdots\!59}a^{5}+\frac{22\!\cdots\!05}{28\!\cdots\!59}a^{4}-\frac{51\!\cdots\!45}{28\!\cdots\!59}a^{3}+\frac{20\!\cdots\!45}{28\!\cdots\!59}a^{2}+\frac{57\!\cdots\!22}{28\!\cdots\!59}a-\frac{66\!\cdots\!63}{28\!\cdots\!59}$, $\frac{40\!\cdots\!46}{28\!\cdots\!59}a^{19}-\frac{26\!\cdots\!37}{28\!\cdots\!59}a^{18}+\frac{65\!\cdots\!67}{28\!\cdots\!59}a^{17}-\frac{61\!\cdots\!10}{28\!\cdots\!59}a^{16}-\frac{39\!\cdots\!92}{28\!\cdots\!59}a^{15}+\frac{24\!\cdots\!61}{28\!\cdots\!59}a^{14}-\frac{81\!\cdots\!18}{28\!\cdots\!59}a^{13}+\frac{14\!\cdots\!03}{28\!\cdots\!59}a^{12}-\frac{16\!\cdots\!77}{28\!\cdots\!59}a^{11}-\frac{17\!\cdots\!58}{28\!\cdots\!59}a^{10}+\frac{10\!\cdots\!94}{28\!\cdots\!59}a^{9}-\frac{19\!\cdots\!08}{28\!\cdots\!59}a^{8}+\frac{59\!\cdots\!30}{28\!\cdots\!59}a^{7}-\frac{48\!\cdots\!63}{28\!\cdots\!59}a^{6}-\frac{27\!\cdots\!06}{28\!\cdots\!59}a^{5}+\frac{20\!\cdots\!41}{28\!\cdots\!59}a^{4}-\frac{11\!\cdots\!01}{28\!\cdots\!59}a^{3}+\frac{35\!\cdots\!01}{28\!\cdots\!59}a^{2}-\frac{50\!\cdots\!67}{28\!\cdots\!59}a+\frac{19\!\cdots\!84}{28\!\cdots\!59}$, $\frac{35\!\cdots\!99}{28\!\cdots\!59}a^{19}-\frac{22\!\cdots\!44}{28\!\cdots\!59}a^{18}+\frac{56\!\cdots\!00}{28\!\cdots\!59}a^{17}-\frac{53\!\cdots\!49}{28\!\cdots\!59}a^{16}-\frac{34\!\cdots\!50}{28\!\cdots\!59}a^{15}+\frac{21\!\cdots\!45}{28\!\cdots\!59}a^{14}-\frac{70\!\cdots\!33}{28\!\cdots\!59}a^{13}+\frac{12\!\cdots\!48}{28\!\cdots\!59}a^{12}-\frac{13\!\cdots\!71}{28\!\cdots\!59}a^{11}-\frac{15\!\cdots\!05}{28\!\cdots\!59}a^{10}+\frac{85\!\cdots\!53}{28\!\cdots\!59}a^{9}-\frac{16\!\cdots\!87}{28\!\cdots\!59}a^{8}+\frac{52\!\cdots\!14}{28\!\cdots\!59}a^{7}-\frac{41\!\cdots\!44}{28\!\cdots\!59}a^{6}-\frac{24\!\cdots\!79}{28\!\cdots\!59}a^{5}+\frac{17\!\cdots\!64}{28\!\cdots\!59}a^{4}-\frac{10\!\cdots\!07}{28\!\cdots\!59}a^{3}+\frac{31\!\cdots\!87}{28\!\cdots\!59}a^{2}-\frac{44\!\cdots\!64}{28\!\cdots\!59}a+\frac{21\!\cdots\!86}{28\!\cdots\!59}$, $\frac{91\!\cdots\!95}{28\!\cdots\!59}a^{19}-\frac{89\!\cdots\!33}{28\!\cdots\!59}a^{18}+\frac{33\!\cdots\!13}{28\!\cdots\!59}a^{17}-\frac{56\!\cdots\!76}{28\!\cdots\!59}a^{16}+\frac{26\!\cdots\!14}{28\!\cdots\!59}a^{15}+\frac{91\!\cdots\!27}{28\!\cdots\!59}a^{14}-\frac{35\!\cdots\!85}{28\!\cdots\!59}a^{13}+\frac{87\!\cdots\!07}{28\!\cdots\!59}a^{12}-\frac{93\!\cdots\!31}{28\!\cdots\!59}a^{11}-\frac{47\!\cdots\!27}{28\!\cdots\!59}a^{10}+\frac{14\!\cdots\!25}{28\!\cdots\!59}a^{9}-\frac{89\!\cdots\!43}{28\!\cdots\!59}a^{8}+\frac{27\!\cdots\!15}{28\!\cdots\!59}a^{7}-\frac{50\!\cdots\!11}{28\!\cdots\!59}a^{6}+\frac{25\!\cdots\!10}{28\!\cdots\!59}a^{5}+\frac{10\!\cdots\!16}{28\!\cdots\!59}a^{4}-\frac{14\!\cdots\!65}{28\!\cdots\!59}a^{3}+\frac{69\!\cdots\!04}{28\!\cdots\!59}a^{2}-\frac{18\!\cdots\!09}{28\!\cdots\!59}a+\frac{20\!\cdots\!53}{28\!\cdots\!59}$, $\frac{31\!\cdots\!12}{28\!\cdots\!59}a^{19}-\frac{19\!\cdots\!06}{28\!\cdots\!59}a^{18}+\frac{48\!\cdots\!68}{28\!\cdots\!59}a^{17}-\frac{44\!\cdots\!81}{28\!\cdots\!59}a^{16}-\frac{32\!\cdots\!20}{28\!\cdots\!59}a^{15}+\frac{18\!\cdots\!62}{28\!\cdots\!59}a^{14}-\frac{61\!\cdots\!75}{28\!\cdots\!59}a^{13}+\frac{10\!\cdots\!06}{28\!\cdots\!59}a^{12}-\frac{71\!\cdots\!46}{28\!\cdots\!59}a^{11}-\frac{13\!\cdots\!71}{28\!\cdots\!59}a^{10}+\frac{69\!\cdots\!61}{28\!\cdots\!59}a^{9}-\frac{14\!\cdots\!16}{28\!\cdots\!59}a^{8}+\frac{45\!\cdots\!28}{28\!\cdots\!59}a^{7}-\frac{34\!\cdots\!85}{28\!\cdots\!59}a^{6}-\frac{37\!\cdots\!71}{28\!\cdots\!59}a^{5}+\frac{14\!\cdots\!30}{28\!\cdots\!59}a^{4}-\frac{81\!\cdots\!23}{28\!\cdots\!59}a^{3}+\frac{24\!\cdots\!17}{28\!\cdots\!59}a^{2}-\frac{29\!\cdots\!48}{28\!\cdots\!59}a+\frac{60\!\cdots\!39}{28\!\cdots\!59}$, $\frac{45\!\cdots\!90}{28\!\cdots\!59}a^{19}-\frac{29\!\cdots\!74}{28\!\cdots\!59}a^{18}+\frac{71\!\cdots\!19}{28\!\cdots\!59}a^{17}-\frac{66\!\cdots\!98}{28\!\cdots\!59}a^{16}-\frac{45\!\cdots\!59}{28\!\cdots\!59}a^{15}+\frac{27\!\cdots\!68}{28\!\cdots\!59}a^{14}-\frac{90\!\cdots\!53}{28\!\cdots\!59}a^{13}+\frac{15\!\cdots\!54}{28\!\cdots\!59}a^{12}-\frac{13\!\cdots\!83}{28\!\cdots\!59}a^{11}-\frac{19\!\cdots\!58}{28\!\cdots\!59}a^{10}+\frac{10\!\cdots\!24}{28\!\cdots\!59}a^{9}-\frac{21\!\cdots\!26}{28\!\cdots\!59}a^{8}+\frac{66\!\cdots\!48}{28\!\cdots\!59}a^{7}-\frac{51\!\cdots\!65}{28\!\cdots\!59}a^{6}-\frac{38\!\cdots\!44}{28\!\cdots\!59}a^{5}+\frac{21\!\cdots\!33}{28\!\cdots\!59}a^{4}-\frac{12\!\cdots\!87}{28\!\cdots\!59}a^{3}+\frac{39\!\cdots\!96}{28\!\cdots\!59}a^{2}-\frac{55\!\cdots\!08}{28\!\cdots\!59}a+\frac{26\!\cdots\!89}{28\!\cdots\!59}$, $\frac{19\!\cdots\!81}{28\!\cdots\!59}a^{19}-\frac{90\!\cdots\!84}{28\!\cdots\!59}a^{18}+\frac{50\!\cdots\!68}{28\!\cdots\!59}a^{17}-\frac{10\!\cdots\!90}{28\!\cdots\!59}a^{16}+\frac{79\!\cdots\!96}{28\!\cdots\!59}a^{15}+\frac{11\!\cdots\!14}{28\!\cdots\!59}a^{14}-\frac{47\!\cdots\!03}{28\!\cdots\!59}a^{13}+\frac{14\!\cdots\!25}{28\!\cdots\!59}a^{12}-\frac{21\!\cdots\!70}{28\!\cdots\!59}a^{11}-\frac{49\!\cdots\!83}{28\!\cdots\!59}a^{10}+\frac{30\!\cdots\!00}{28\!\cdots\!59}a^{9}-\frac{98\!\cdots\!45}{28\!\cdots\!59}a^{8}+\frac{38\!\cdots\!46}{28\!\cdots\!59}a^{7}-\frac{10\!\cdots\!12}{28\!\cdots\!59}a^{6}+\frac{57\!\cdots\!54}{28\!\cdots\!59}a^{5}+\frac{20\!\cdots\!23}{28\!\cdots\!59}a^{4}-\frac{29\!\cdots\!24}{28\!\cdots\!59}a^{3}+\frac{13\!\cdots\!52}{28\!\cdots\!59}a^{2}-\frac{33\!\cdots\!07}{28\!\cdots\!59}a+\frac{24\!\cdots\!57}{28\!\cdots\!59}$, $\frac{53\!\cdots\!51}{28\!\cdots\!59}a^{19}-\frac{32\!\cdots\!04}{28\!\cdots\!59}a^{18}+\frac{73\!\cdots\!50}{28\!\cdots\!59}a^{17}-\frac{51\!\cdots\!05}{28\!\cdots\!59}a^{16}-\frac{80\!\cdots\!54}{28\!\cdots\!59}a^{15}+\frac{30\!\cdots\!61}{28\!\cdots\!59}a^{14}-\frac{95\!\cdots\!45}{28\!\cdots\!59}a^{13}+\frac{14\!\cdots\!71}{28\!\cdots\!59}a^{12}+\frac{45\!\cdots\!69}{28\!\cdots\!59}a^{11}-\frac{23\!\cdots\!14}{28\!\cdots\!59}a^{10}+\frac{39\!\cdots\!50}{28\!\cdots\!59}a^{9}-\frac{20\!\cdots\!15}{28\!\cdots\!59}a^{8}+\frac{71\!\cdots\!44}{28\!\cdots\!59}a^{7}-\frac{34\!\cdots\!38}{28\!\cdots\!59}a^{6}-\frac{26\!\cdots\!49}{28\!\cdots\!59}a^{5}+\frac{22\!\cdots\!05}{28\!\cdots\!59}a^{4}-\frac{51\!\cdots\!45}{28\!\cdots\!59}a^{3}+\frac{20\!\cdots\!45}{28\!\cdots\!59}a^{2}+\frac{57\!\cdots\!22}{28\!\cdots\!59}a-\frac{94\!\cdots\!22}{28\!\cdots\!59}$, $\frac{17\!\cdots\!36}{28\!\cdots\!59}a^{19}-\frac{11\!\cdots\!01}{28\!\cdots\!59}a^{18}+\frac{29\!\cdots\!31}{28\!\cdots\!59}a^{17}-\frac{31\!\cdots\!59}{28\!\cdots\!59}a^{16}-\frac{12\!\cdots\!60}{28\!\cdots\!59}a^{15}+\frac{11\!\cdots\!22}{28\!\cdots\!59}a^{14}-\frac{36\!\cdots\!73}{28\!\cdots\!59}a^{13}+\frac{66\!\cdots\!70}{28\!\cdots\!59}a^{12}-\frac{17\!\cdots\!31}{28\!\cdots\!59}a^{11}-\frac{75\!\cdots\!94}{28\!\cdots\!59}a^{10}+\frac{56\!\cdots\!08}{28\!\cdots\!59}a^{9}-\frac{88\!\cdots\!18}{28\!\cdots\!59}a^{8}+\frac{27\!\cdots\!71}{28\!\cdots\!59}a^{7}-\frac{25\!\cdots\!73}{28\!\cdots\!59}a^{6}+\frac{21\!\cdots\!13}{28\!\cdots\!59}a^{5}+\frac{91\!\cdots\!68}{28\!\cdots\!59}a^{4}-\frac{65\!\cdots\!39}{28\!\cdots\!59}a^{3}+\frac{22\!\cdots\!28}{28\!\cdots\!59}a^{2}-\frac{41\!\cdots\!15}{28\!\cdots\!59}a+\frac{23\!\cdots\!99}{28\!\cdots\!59}$, $\frac{27\!\cdots\!99}{28\!\cdots\!59}a^{19}-\frac{17\!\cdots\!82}{28\!\cdots\!59}a^{18}+\frac{43\!\cdots\!66}{28\!\cdots\!59}a^{17}-\frac{39\!\cdots\!78}{28\!\cdots\!59}a^{16}-\frac{27\!\cdots\!29}{28\!\cdots\!59}a^{15}+\frac{16\!\cdots\!09}{28\!\cdots\!59}a^{14}-\frac{54\!\cdots\!89}{28\!\cdots\!59}a^{13}+\frac{92\!\cdots\!45}{28\!\cdots\!59}a^{12}-\frac{75\!\cdots\!96}{28\!\cdots\!59}a^{11}-\frac{11\!\cdots\!32}{28\!\cdots\!59}a^{10}+\frac{61\!\cdots\!41}{28\!\cdots\!59}a^{9}-\frac{12\!\cdots\!68}{28\!\cdots\!59}a^{8}+\frac{39\!\cdots\!13}{28\!\cdots\!59}a^{7}-\frac{30\!\cdots\!07}{28\!\cdots\!59}a^{6}-\frac{27\!\cdots\!18}{28\!\cdots\!59}a^{5}+\frac{12\!\cdots\!38}{28\!\cdots\!59}a^{4}-\frac{72\!\cdots\!79}{28\!\cdots\!59}a^{3}+\frac{23\!\cdots\!80}{28\!\cdots\!59}a^{2}-\frac{33\!\cdots\!29}{28\!\cdots\!59}a+\frac{19\!\cdots\!63}{28\!\cdots\!59}$, $\frac{27\!\cdots\!14}{28\!\cdots\!59}a^{19}-\frac{18\!\cdots\!35}{28\!\cdots\!59}a^{18}+\frac{47\!\cdots\!68}{28\!\cdots\!59}a^{17}-\frac{50\!\cdots\!85}{28\!\cdots\!59}a^{16}-\frac{19\!\cdots\!11}{28\!\cdots\!59}a^{15}+\frac{17\!\cdots\!88}{28\!\cdots\!59}a^{14}-\frac{58\!\cdots\!36}{28\!\cdots\!59}a^{13}+\frac{10\!\cdots\!20}{28\!\cdots\!59}a^{12}-\frac{28\!\cdots\!85}{28\!\cdots\!59}a^{11}-\frac{12\!\cdots\!64}{28\!\cdots\!59}a^{10}+\frac{91\!\cdots\!98}{28\!\cdots\!59}a^{9}-\frac{14\!\cdots\!83}{28\!\cdots\!59}a^{8}+\frac{43\!\cdots\!74}{28\!\cdots\!59}a^{7}-\frac{40\!\cdots\!67}{28\!\cdots\!59}a^{6}+\frac{31\!\cdots\!72}{28\!\cdots\!59}a^{5}+\frac{14\!\cdots\!26}{28\!\cdots\!59}a^{4}-\frac{10\!\cdots\!73}{28\!\cdots\!59}a^{3}+\frac{36\!\cdots\!67}{28\!\cdots\!59}a^{2}-\frac{63\!\cdots\!43}{28\!\cdots\!59}a+\frac{31\!\cdots\!76}{28\!\cdots\!59}$, $\frac{52\!\cdots\!96}{28\!\cdots\!59}a^{19}-\frac{33\!\cdots\!73}{28\!\cdots\!59}a^{18}+\frac{83\!\cdots\!28}{28\!\cdots\!59}a^{17}-\frac{77\!\cdots\!54}{28\!\cdots\!59}a^{16}-\frac{53\!\cdots\!86}{28\!\cdots\!59}a^{15}+\frac{32\!\cdots\!64}{28\!\cdots\!59}a^{14}-\frac{10\!\cdots\!87}{28\!\cdots\!59}a^{13}+\frac{17\!\cdots\!98}{28\!\cdots\!59}a^{12}-\frac{15\!\cdots\!11}{28\!\cdots\!59}a^{11}-\frac{22\!\cdots\!89}{28\!\cdots\!59}a^{10}+\frac{12\!\cdots\!29}{28\!\cdots\!59}a^{9}-\frac{24\!\cdots\!59}{28\!\cdots\!59}a^{8}+\frac{77\!\cdots\!39}{28\!\cdots\!59}a^{7}-\frac{59\!\cdots\!32}{28\!\cdots\!59}a^{6}-\frac{49\!\cdots\!82}{28\!\cdots\!59}a^{5}+\frac{25\!\cdots\!65}{28\!\cdots\!59}a^{4}-\frac{14\!\cdots\!60}{28\!\cdots\!59}a^{3}+\frac{44\!\cdots\!07}{28\!\cdots\!59}a^{2}-\frac{62\!\cdots\!48}{28\!\cdots\!59}a+\frac{32\!\cdots\!52}{28\!\cdots\!59}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 311138.716179 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{4}\cdot 311138.716179 \cdot 1}{2\cdot\sqrt{49338146756019243307761664}}\cr\approx \mathstrut & 0.141387841675 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 8*x^19 + 26*x^18 - 40*x^17 + 14*x^16 + 76*x^15 - 296*x^14 + 658*x^13 - 577*x^12 - 362*x^11 + 906*x^10 - 866*x^9 + 2214*x^8 - 3458*x^7 + 1784*x^6 + 564*x^5 - 1042*x^4 + 542*x^3 - 158*x^2 + 22*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 8*x^19 + 26*x^18 - 40*x^17 + 14*x^16 + 76*x^15 - 296*x^14 + 658*x^13 - 577*x^12 - 362*x^11 + 906*x^10 - 866*x^9 + 2214*x^8 - 3458*x^7 + 1784*x^6 + 564*x^5 - 1042*x^4 + 542*x^3 - 158*x^2 + 22*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 8*x^19 + 26*x^18 - 40*x^17 + 14*x^16 + 76*x^15 - 296*x^14 + 658*x^13 - 577*x^12 - 362*x^11 + 906*x^10 - 866*x^9 + 2214*x^8 - 3458*x^7 + 1784*x^6 + 564*x^5 - 1042*x^4 + 542*x^3 - 158*x^2 + 22*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 8*x^19 + 26*x^18 - 40*x^17 + 14*x^16 + 76*x^15 - 296*x^14 + 658*x^13 - 577*x^12 - 362*x^11 + 906*x^10 - 866*x^9 + 2214*x^8 - 3458*x^7 + 1784*x^6 + 564*x^5 - 1042*x^4 + 542*x^3 - 158*x^2 + 22*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\wr C_5$ (as 20T41):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 160
The 16 conjugacy class representatives for $C_2\wr C_5$
Character table for $C_2\wr C_5$

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.8.219503494144.1 x2, 10.6.219503494144.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed
Minimal sibling: 10.8.219503494144.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.10.0.1}{10} }^{2}$ ${\href{/padicField/5.5.0.1}{5} }^{4}$ ${\href{/padicField/7.10.0.1}{10} }^{2}$ R ${\href{/padicField/13.5.0.1}{5} }^{4}$ ${\href{/padicField/17.5.0.1}{5} }^{4}$ ${\href{/padicField/19.10.0.1}{10} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{10}$ ${\href{/padicField/29.5.0.1}{5} }^{4}$ ${\href{/padicField/31.10.0.1}{10} }^{2}$ ${\href{/padicField/37.5.0.1}{5} }^{4}$ ${\href{/padicField/41.5.0.1}{5} }^{4}$ ${\href{/padicField/43.2.0.1}{2} }^{8}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ ${\href{/padicField/47.10.0.1}{10} }^{2}$ ${\href{/padicField/53.5.0.1}{5} }^{4}$ ${\href{/padicField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $20$$4$$5$$30$
\(11\) Copy content Toggle raw display 11.10.8.5$x^{10} + 35 x^{9} + 500 x^{8} + 3710 x^{7} + 14985 x^{6} + 31389 x^{5} + 30355 x^{4} + 19790 x^{3} + 37110 x^{2} + 111495 x + 148840$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} + 35 x^{9} + 500 x^{8} + 3710 x^{7} + 14985 x^{6} + 31389 x^{5} + 30355 x^{4} + 19790 x^{3} + 37110 x^{2} + 111495 x + 148840$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$