Properties

Label 20.12.4896064584...8608.1
Degree $20$
Signature $[12, 4]$
Discriminant $2^{20}\cdot 13^{14}\cdot 17^{9}$
Root discriminant $43.10$
Ramified primes $2, 13, 17$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T803

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![169, -338, -325, 130, 1677, 962, -5876, 2028, 5625, -5110, -791, 3424, -1279, -1138, 990, 52, -291, 88, 9, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 8*x^19 + 9*x^18 + 88*x^17 - 291*x^16 + 52*x^15 + 990*x^14 - 1138*x^13 - 1279*x^12 + 3424*x^11 - 791*x^10 - 5110*x^9 + 5625*x^8 + 2028*x^7 - 5876*x^6 + 962*x^5 + 1677*x^4 + 130*x^3 - 325*x^2 - 338*x + 169)
 
gp: K = bnfinit(x^20 - 8*x^19 + 9*x^18 + 88*x^17 - 291*x^16 + 52*x^15 + 990*x^14 - 1138*x^13 - 1279*x^12 + 3424*x^11 - 791*x^10 - 5110*x^9 + 5625*x^8 + 2028*x^7 - 5876*x^6 + 962*x^5 + 1677*x^4 + 130*x^3 - 325*x^2 - 338*x + 169, 1)
 

Normalized defining polynomial

\( x^{20} - 8 x^{19} + 9 x^{18} + 88 x^{17} - 291 x^{16} + 52 x^{15} + 990 x^{14} - 1138 x^{13} - 1279 x^{12} + 3424 x^{11} - 791 x^{10} - 5110 x^{9} + 5625 x^{8} + 2028 x^{7} - 5876 x^{6} + 962 x^{5} + 1677 x^{4} + 130 x^{3} - 325 x^{2} - 338 x + 169 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(489606458428108592552566464708608=2^{20}\cdot 13^{14}\cdot 17^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $43.10$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 13, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13} a^{18} + \frac{5}{13} a^{17} - \frac{4}{13} a^{16} - \frac{3}{13} a^{15} - \frac{5}{13} a^{14} + \frac{2}{13} a^{12} + \frac{6}{13} a^{11} - \frac{5}{13} a^{10} + \frac{5}{13} a^{9} + \frac{2}{13} a^{8} - \frac{1}{13} a^{7} - \frac{4}{13} a^{6}$, $\frac{1}{223451174488712041820564681} a^{19} - \frac{4026566304437984276095362}{223451174488712041820564681} a^{18} + \frac{4766203424607961768369115}{17188551883747080140043437} a^{17} - \frac{111507327763719765582882126}{223451174488712041820564681} a^{16} + \frac{76057476639898977408139724}{223451174488712041820564681} a^{15} + \frac{90224726672997972435380815}{223451174488712041820564681} a^{14} + \frac{35424855373636966044395109}{223451174488712041820564681} a^{13} - \frac{22809561522111300200685338}{223451174488712041820564681} a^{12} + \frac{103277994667460173322415646}{223451174488712041820564681} a^{11} + \frac{82706454318963854542332118}{223451174488712041820564681} a^{10} - \frac{102992134774218204984942948}{223451174488712041820564681} a^{9} + \frac{103050931441578519017710713}{223451174488712041820564681} a^{8} + \frac{28476290833603419825333760}{223451174488712041820564681} a^{7} + \frac{24578055426174692463280417}{223451174488712041820564681} a^{6} - \frac{5585592490616200680118707}{17188551883747080140043437} a^{5} - \frac{7437225756117227403009382}{17188551883747080140043437} a^{4} - \frac{4691441605112818789894508}{17188551883747080140043437} a^{3} - \frac{4680799906578726236718469}{17188551883747080140043437} a^{2} + \frac{3199802674415961336416300}{17188551883747080140043437} a - \frac{5180231013863442828852128}{17188551883747080140043437}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2679289306.37 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T803:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 122880
The 126 conjugacy class representatives for t20n803 are not computed
Character table for t20n803 is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), 5.5.10158928.1, 10.10.1341649635419392.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ R R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.6.5.3$x^{6} - 208$$6$$1$$5$$C_6$$[\ ]_{6}$
13.6.5.3$x^{6} - 208$$6$$1$$5$$C_6$$[\ ]_{6}$
$17$17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.3.2.1$x^{3} - 17$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
17.3.2.1$x^{3} - 17$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
17.6.5.1$x^{6} - 17$$6$$1$$5$$D_{6}$$[\ ]_{6}^{2}$