Normalized defining polynomial
\( x^{20} - 8 x^{19} + 4 x^{18} + 116 x^{17} - 256 x^{16} - 410 x^{15} + 1632 x^{14} - 360 x^{13} - 2580 x^{12} + 2038 x^{11} - 1556 x^{10} + 2380 x^{9} + 2190 x^{8} - 3008 x^{7} - 849 x^{6} - 1894 x^{5} + 3038 x^{4} - 3318 x^{3} + 28 x^{2} + 4718 x - 1109 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4877563511063069089624758321369=3^{2}\cdot 71^{2}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 71, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{15} + \frac{1}{6} a^{13} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{1}{6} a^{8} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{6} a^{16} + \frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{17} + \frac{1}{6} a^{12} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{3} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{18} a^{18} + \frac{1}{18} a^{17} + \frac{1}{18} a^{15} - \frac{1}{18} a^{14} - \frac{1}{9} a^{12} + \frac{1}{6} a^{11} - \frac{2}{9} a^{10} + \frac{2}{9} a^{9} - \frac{2}{9} a^{8} - \frac{1}{9} a^{6} + \frac{1}{18} a^{5} + \frac{5}{18} a^{4} + \frac{1}{18} a^{3} + \frac{4}{9} a - \frac{5}{18}$, $\frac{1}{7621539708590043325072379210106} a^{19} - \frac{39116065832064996017818656859}{3810769854295021662536189605053} a^{18} - \frac{11502289997195611873130021015}{846837745398893702785819912234} a^{17} + \frac{478598374278797111934541919107}{7621539708590043325072379210106} a^{16} - \frac{188004017577551902797253317869}{3810769854295021662536189605053} a^{15} - \frac{2801148791661651737395208887}{149441955070393006373968219806} a^{14} + \frac{6956443679917315729656766423}{224162932605589509560952329709} a^{13} + \frac{69330924111837937563070669728}{423418872699446851392909956117} a^{12} + \frac{293604885189676761851190639761}{7621539708590043325072379210106} a^{11} - \frac{1534347289867017279414070245707}{7621539708590043325072379210106} a^{10} - \frac{70073203289393354872599846865}{224162932605589509560952329709} a^{9} + \frac{137665707158268655556733758}{74720977535196503186984109903} a^{8} - \frac{1263345128648548517579516645461}{3810769854295021662536189605053} a^{7} + \frac{1212861790528056930569226361261}{7621539708590043325072379210106} a^{6} - \frac{2394709743054926626128767689357}{7621539708590043325072379210106} a^{5} - \frac{1537803041767566298614619886005}{3810769854295021662536189605053} a^{4} + \frac{161394411452694867249568571739}{423418872699446851392909956117} a^{3} - \frac{3452982186242492672074525546651}{7621539708590043325072379210106} a^{2} + \frac{3090632137796299412606016215863}{7621539708590043325072379210106} a + \frac{203249790961731724406695292818}{1270256618098340554178729868351}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 138462893.119 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n347 are not computed |
| Character table for t20n347 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $71$ | 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.2.2 | $x^{4} - 71 x^{2} + 55451$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||