Normalized defining polynomial
\( x^{20} - 3 x^{19} - 28 x^{18} + 75 x^{17} + 305 x^{16} - 804 x^{15} - 1602 x^{14} + 6014 x^{13} + 4413 x^{12} - 39219 x^{11} - 8747 x^{10} + 199639 x^{9} + 7640 x^{8} - 652342 x^{7} + 101226 x^{6} + 1140214 x^{5} - 364886 x^{4} - 793637 x^{3} + 189952 x^{2} + 188709 x + 23291 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(474764677846779705681219512939453125=5^{15}\cdot 11^{5}\cdot 9931^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 9931$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3801340598129900983364994029040963693285507077016289} a^{19} - \frac{123288673109621043498548052110828263378105111690672}{3801340598129900983364994029040963693285507077016289} a^{18} - \frac{1859963877586146376730574560331776242219869721962331}{3801340598129900983364994029040963693285507077016289} a^{17} + \frac{802419713026088593570674384656834215593484798688460}{3801340598129900983364994029040963693285507077016289} a^{16} - \frac{621561362251076729839636445995550352849193839148233}{3801340598129900983364994029040963693285507077016289} a^{15} - \frac{930581545436218981087846051558864417194114121969730}{3801340598129900983364994029040963693285507077016289} a^{14} + \frac{1518349744551879795811250008599211033639745886298304}{3801340598129900983364994029040963693285507077016289} a^{13} - \frac{1130908991012194507612602647922771111544748465694037}{3801340598129900983364994029040963693285507077016289} a^{12} + \frac{478188848101215439646532670126437575154463653220209}{3801340598129900983364994029040963693285507077016289} a^{11} + \frac{330661172731028889820785090669251531496484562956915}{3801340598129900983364994029040963693285507077016289} a^{10} + \frac{1166450148818882689571210290918846553388837351064150}{3801340598129900983364994029040963693285507077016289} a^{9} - \frac{687781786758112944059483288310917909364389967885627}{3801340598129900983364994029040963693285507077016289} a^{8} - \frac{1591603923977084825890099870814089839154247552002216}{3801340598129900983364994029040963693285507077016289} a^{7} + \frac{717788717819075757120924311248867131912012342529236}{3801340598129900983364994029040963693285507077016289} a^{6} + \frac{897467804670231720525210605732558419481369896211804}{3801340598129900983364994029040963693285507077016289} a^{5} + \frac{501262302873261274751029184418971056346839304372514}{3801340598129900983364994029040963693285507077016289} a^{4} - \frac{1756783389767295588215443119741682847967653747853404}{3801340598129900983364994029040963693285507077016289} a^{3} + \frac{1335629625017957367263819154416407407583094338351693}{3801340598129900983364994029040963693285507077016289} a^{2} + \frac{355647224063105230831209276653577185130029576102490}{3801340598129900983364994029040963693285507077016289} a - \frac{1013828674122302393246316475894506829000390119263328}{3801340598129900983364994029040963693285507077016289}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48335741865.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 324 conjugacy class representatives for t20n1023 are not computed |
| Character table for t20n1023 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.932312193828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 9931 | Data not computed | ||||||