Properties

Label 20.12.4747646778...3125.1
Degree $20$
Signature $[12, 4]$
Discriminant $5^{15}\cdot 11^{5}\cdot 9931^{5}$
Root discriminant $60.79$
Ramified primes $5, 11, 9931$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1023

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-775, 10050, -47110, 81080, 136989, -432661, -352102, 523933, 731100, 66599, -236955, -47393, 35632, 4795, -4122, -393, 417, 57, -30, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 - 30*x^18 + 57*x^17 + 417*x^16 - 393*x^15 - 4122*x^14 + 4795*x^13 + 35632*x^12 - 47393*x^11 - 236955*x^10 + 66599*x^9 + 731100*x^8 + 523933*x^7 - 352102*x^6 - 432661*x^5 + 136989*x^4 + 81080*x^3 - 47110*x^2 + 10050*x - 775)
 
gp: K = bnfinit(x^20 - 3*x^19 - 30*x^18 + 57*x^17 + 417*x^16 - 393*x^15 - 4122*x^14 + 4795*x^13 + 35632*x^12 - 47393*x^11 - 236955*x^10 + 66599*x^9 + 731100*x^8 + 523933*x^7 - 352102*x^6 - 432661*x^5 + 136989*x^4 + 81080*x^3 - 47110*x^2 + 10050*x - 775, 1)
 

Normalized defining polynomial

\( x^{20} - 3 x^{19} - 30 x^{18} + 57 x^{17} + 417 x^{16} - 393 x^{15} - 4122 x^{14} + 4795 x^{13} + 35632 x^{12} - 47393 x^{11} - 236955 x^{10} + 66599 x^{9} + 731100 x^{8} + 523933 x^{7} - 352102 x^{6} - 432661 x^{5} + 136989 x^{4} + 81080 x^{3} - 47110 x^{2} + 10050 x - 775 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(474764677846779705681219512939453125=5^{15}\cdot 11^{5}\cdot 9931^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $60.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 9931$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{545} a^{18} + \frac{117}{545} a^{17} - \frac{18}{109} a^{16} + \frac{172}{545} a^{15} + \frac{42}{545} a^{14} - \frac{208}{545} a^{13} + \frac{18}{545} a^{12} + \frac{5}{109} a^{11} + \frac{107}{545} a^{10} - \frac{103}{545} a^{9} + \frac{31}{109} a^{8} + \frac{54}{545} a^{7} + \frac{29}{109} a^{6} + \frac{113}{545} a^{5} + \frac{243}{545} a^{4} + \frac{79}{545} a^{3} - \frac{21}{545} a^{2} + \frac{32}{109} a + \frac{10}{109}$, $\frac{1}{1323362094548037129790090713268857364044241269439211075} a^{19} + \frac{641978283961656838514355035914294969390383165438812}{1323362094548037129790090713268857364044241269439211075} a^{18} + \frac{70081833612683480135526407009681714645967345514529684}{264672418909607425958018142653771472808848253887842215} a^{17} + \frac{341637295968561542240561589303256920818005669850825147}{1323362094548037129790090713268857364044241269439211075} a^{16} - \frac{574963102557199431600570244114254855379015031226682653}{1323362094548037129790090713268857364044241269439211075} a^{15} - \frac{135786985018436374093732736115853706546464902799712673}{1323362094548037129790090713268857364044241269439211075} a^{14} - \frac{88384707275118234725077957257510703100040640047329452}{1323362094548037129790090713268857364044241269439211075} a^{13} + \frac{31726643145857845952339150794037717096751772012964286}{264672418909607425958018142653771472808848253887842215} a^{12} - \frac{639012946924193630302633089779439286398508255968926383}{1323362094548037129790090713268857364044241269439211075} a^{11} - \frac{519826093881351698395685032884985600769739803467784563}{1323362094548037129790090713268857364044241269439211075} a^{10} - \frac{24289030620739044255522571093356480962681142509914552}{264672418909607425958018142653771472808848253887842215} a^{9} + \frac{645844267378643887623299053294808638974663515654150889}{1323362094548037129790090713268857364044241269439211075} a^{8} - \frac{1975172452968046520918505089703250025428322855183058}{264672418909607425958018142653771472808848253887842215} a^{7} + \frac{88888593173895869910237872217610646511275997013167513}{1323362094548037129790090713268857364044241269439211075} a^{6} + \frac{130421641250532866970633050964898476849828231107491693}{1323362094548037129790090713268857364044241269439211075} a^{5} - \frac{317275296405317908248731988330552916684802842913436506}{1323362094548037129790090713268857364044241269439211075} a^{4} - \frac{437058085966161029775340358964062365509187065241749816}{1323362094548037129790090713268857364044241269439211075} a^{3} - \frac{13277370091677456977233997925137844455759045721094631}{264672418909607425958018142653771472808848253887842215} a^{2} - \frac{89929630125037803168951326429177721223655481416861121}{264672418909607425958018142653771472808848253887842215} a - \frac{14332235366788819262205980401624734178743614296416489}{52934483781921485191603628530754294561769650777568443}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 81096966325.5 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1023:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7372800
The 324 conjugacy class representatives for t20n1023 are not computed
Character table for t20n1023 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.932312193828125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.12.11.2$x^{12} - 20$$12$$1$$11$$S_3 \times C_4$$[\ ]_{12}^{2}$
$11$11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
11.10.0.1$x^{10} + x^{2} - x + 6$$1$$10$$0$$C_{10}$$[\ ]^{10}$
9931Data not computed