Properties

Label 20.12.4617939718...4576.2
Degree $20$
Signature $[12, 4]$
Discriminant $2^{20}\cdot 11^{18}\cdot 89^{2}$
Root discriminant $27.12$
Ramified primes $2, 11, 89$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T340

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -22, 82, 176, -536, -836, 1247, 1276, -1652, -396, 1497, -506, -853, 374, 212, -66, 15, 0, -13, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 13*x^18 + 15*x^16 - 66*x^15 + 212*x^14 + 374*x^13 - 853*x^12 - 506*x^11 + 1497*x^10 - 396*x^9 - 1652*x^8 + 1276*x^7 + 1247*x^6 - 836*x^5 - 536*x^4 + 176*x^3 + 82*x^2 - 22*x + 1)
 
gp: K = bnfinit(x^20 - 13*x^18 + 15*x^16 - 66*x^15 + 212*x^14 + 374*x^13 - 853*x^12 - 506*x^11 + 1497*x^10 - 396*x^9 - 1652*x^8 + 1276*x^7 + 1247*x^6 - 836*x^5 - 536*x^4 + 176*x^3 + 82*x^2 - 22*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 13 x^{18} + 15 x^{16} - 66 x^{15} + 212 x^{14} + 374 x^{13} - 853 x^{12} - 506 x^{11} + 1497 x^{10} - 396 x^{9} - 1652 x^{8} + 1276 x^{7} + 1247 x^{6} - 836 x^{5} - 536 x^{4} + 176 x^{3} + 82 x^{2} - 22 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(46179397182603358960092184576=2^{20}\cdot 11^{18}\cdot 89^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.12$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{4585901446515282173128243} a^{19} - \frac{536926374423767427542232}{4585901446515282173128243} a^{18} + \frac{989137015552437666389510}{4585901446515282173128243} a^{17} + \frac{324422242384227135850701}{4585901446515282173128243} a^{16} - \frac{1257297649521791282519544}{4585901446515282173128243} a^{15} - \frac{1858445745697901752471439}{4585901446515282173128243} a^{14} - \frac{1955768614420509834046324}{4585901446515282173128243} a^{13} + \frac{788009819116783879252992}{4585901446515282173128243} a^{12} - \frac{1690367873586743514571093}{4585901446515282173128243} a^{11} - \frac{513445408165557719802405}{4585901446515282173128243} a^{10} + \frac{1045593123651916081942296}{4585901446515282173128243} a^{9} - \frac{610449869052776977342992}{4585901446515282173128243} a^{8} - \frac{1427148758834415410040418}{4585901446515282173128243} a^{7} + \frac{1406562638228923969229373}{4585901446515282173128243} a^{6} - \frac{1035383517088647552942472}{4585901446515282173128243} a^{5} - \frac{1173188466317899054531816}{4585901446515282173128243} a^{4} - \frac{598758154620288867991988}{4585901446515282173128243} a^{3} - \frac{1422954270300637094427575}{4585901446515282173128243} a^{2} - \frac{1951232458030059066502573}{4585901446515282173128243} a + \frac{974302338214280918644407}{4585901446515282173128243}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 13022714.1695 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T340:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 80 conjugacy class representatives for t20n340 are not computed
Character table for t20n340 is not computed

Intermediate fields

\(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.11$x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$$2$$5$$10$$C_{10}$$[2]^{5}$
2.10.10.11$x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$$2$$5$$10$$C_{10}$$[2]^{5}$
$11$11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
$89$$\Q_{89}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{89}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{89}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{89}$$x + 3$$1$$1$$0$Trivial$[\ ]$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
89.2.1.2$x^{2} + 267$$2$$1$$1$$C_2$$[\ ]_{2}$
89.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$