Normalized defining polynomial
\( x^{20} - 24 x^{18} - 22 x^{17} + 213 x^{16} + 396 x^{15} - 679 x^{14} - 2442 x^{13} - 644 x^{12} + 5456 x^{11} + 7041 x^{10} - 1122 x^{9} - 8692 x^{8} - 5984 x^{7} + 1115 x^{6} + 3806 x^{5} + 2423 x^{4} + 814 x^{3} + 170 x^{2} + 22 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46179397182603358960092184576=2^{20}\cdot 11^{18}\cdot 89^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{4}{11} a^{14} + \frac{1}{11} a^{13} - \frac{2}{11} a^{12} + \frac{3}{11} a^{11} - \frac{1}{11} a^{10} - \frac{3}{11} a^{9} + \frac{2}{11} a^{8} - \frac{5}{11} a^{7} - \frac{4}{11} a^{6} - \frac{1}{11} a^{5} + \frac{5}{11} a^{4} + \frac{3}{11} a^{3} + \frac{3}{11} a^{2} + \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{16} - \frac{4}{11} a^{14} + \frac{2}{11} a^{13} - \frac{5}{11} a^{12} + \frac{4}{11} a^{10} + \frac{1}{11} a^{9} + \frac{3}{11} a^{8} - \frac{2}{11} a^{7} + \frac{5}{11} a^{6} + \frac{1}{11} a^{5} + \frac{1}{11} a^{4} + \frac{4}{11} a^{3} + \frac{3}{11} a^{2} - \frac{2}{11} a + \frac{4}{11}$, $\frac{1}{11} a^{17} - \frac{3}{11} a^{14} - \frac{1}{11} a^{13} + \frac{3}{11} a^{12} + \frac{5}{11} a^{11} - \frac{3}{11} a^{10} + \frac{2}{11} a^{9} - \frac{5}{11} a^{8} - \frac{4}{11} a^{7} - \frac{4}{11} a^{6} - \frac{3}{11} a^{5} + \frac{2}{11} a^{4} + \frac{4}{11} a^{3} - \frac{1}{11} a^{2} + \frac{1}{11} a + \frac{4}{11}$, $\frac{1}{11} a^{18} - \frac{2}{11} a^{14} - \frac{5}{11} a^{13} - \frac{1}{11} a^{12} - \frac{5}{11} a^{11} - \frac{1}{11} a^{10} - \frac{3}{11} a^{9} + \frac{2}{11} a^{8} + \frac{3}{11} a^{7} - \frac{4}{11} a^{6} - \frac{1}{11} a^{5} - \frac{3}{11} a^{4} - \frac{3}{11} a^{3} - \frac{1}{11} a^{2} - \frac{1}{11} a + \frac{3}{11}$, $\frac{1}{34029126729763} a^{19} - \frac{706478636332}{34029126729763} a^{18} + \frac{138106245273}{3093556975433} a^{17} + \frac{316518967966}{34029126729763} a^{16} - \frac{3945349472}{110844061009} a^{15} + \frac{5008230971213}{34029126729763} a^{14} - \frac{6240856718859}{34029126729763} a^{13} + \frac{8111656572754}{34029126729763} a^{12} - \frac{2184182067517}{34029126729763} a^{11} - \frac{3786530185312}{34029126729763} a^{10} + \frac{3421020492883}{34029126729763} a^{9} - \frac{694680895922}{34029126729763} a^{8} - \frac{5364274894295}{34029126729763} a^{7} + \frac{10148202901395}{34029126729763} a^{6} + \frac{6664600577169}{34029126729763} a^{5} + \frac{10158997036308}{34029126729763} a^{4} + \frac{16141329076806}{34029126729763} a^{3} - \frac{9710134811879}{34029126729763} a^{2} - \frac{3153943010313}{34029126729763} a + \frac{15686073374523}{34029126729763}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13201238.9695 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 40 conjugacy class representatives for t20n262 |
| Character table for t20n262 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $89$ | $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |