Normalized defining polynomial
\( x^{20} - 5 x^{19} - 24 x^{18} + 152 x^{17} + 259 x^{16} - 1401 x^{15} - 4914 x^{14} + 10685 x^{13} + 41618 x^{12} - 59641 x^{11} - 133294 x^{10} + 161474 x^{9} + 138008 x^{8} - 199625 x^{7} - 23642 x^{6} + 80244 x^{5} - 4063 x^{4} - 11828 x^{3} - 381 x^{2} + 1187 x - 53 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45702574402961582626142131083938873=89417^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $89417$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7} a^{17} - \frac{3}{7} a^{16} + \frac{3}{7} a^{15} - \frac{3}{7} a^{14} - \frac{1}{7} a^{13} - \frac{1}{7} a^{12} - \frac{3}{7} a^{11} - \frac{2}{7} a^{10} - \frac{3}{7} a^{9} + \frac{1}{7} a^{8} - \frac{1}{7} a^{7} - \frac{2}{7} a^{6} + \frac{2}{7} a^{5} + \frac{1}{7} a^{4} + \frac{3}{7} a^{2} - \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{35} a^{18} - \frac{1}{35} a^{17} + \frac{11}{35} a^{16} + \frac{17}{35} a^{15} - \frac{2}{5} a^{14} + \frac{11}{35} a^{13} + \frac{9}{35} a^{12} - \frac{3}{7} a^{11} + \frac{2}{5} a^{10} - \frac{1}{7} a^{9} - \frac{13}{35} a^{8} + \frac{17}{35} a^{7} - \frac{16}{35} a^{6} - \frac{16}{35} a^{5} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} + \frac{17}{35} a^{2} + \frac{1}{7} a - \frac{13}{35}$, $\frac{1}{7820932204659740130009950221305870670141912895} a^{19} + \frac{2331654676465547485309912998515265976092377}{1117276029237105732858564317329410095734558985} a^{18} - \frac{258393722829729643998314116204548914419707364}{7820932204659740130009950221305870670141912895} a^{17} + \frac{1350817077544060501387183283043608735952644097}{7820932204659740130009950221305870670141912895} a^{16} - \frac{2769976618202950447950226688016043701242295944}{7820932204659740130009950221305870670141912895} a^{15} - \frac{2070396345657588798564058690132605585776239474}{7820932204659740130009950221305870670141912895} a^{14} + \frac{3176306001497227811712423125558109097750090704}{7820932204659740130009950221305870670141912895} a^{13} - \frac{103955838754381109080815477648192581113057663}{223455205847421146571712863465882019146911797} a^{12} - \frac{2823406918656743086629713748647485897098678576}{7820932204659740130009950221305870670141912895} a^{11} - \frac{77998746788755466109062121223590066598026317}{223455205847421146571712863465882019146911797} a^{10} - \frac{511768517077417247349548228038095390273027904}{1117276029237105732858564317329410095734558985} a^{9} - \frac{200946421082370369371525139237002803370990198}{7820932204659740130009950221305870670141912895} a^{8} + \frac{486770627299173906064516050566217028297498532}{1117276029237105732858564317329410095734558985} a^{7} + \frac{3097615390077551651861029509808074452555926119}{7820932204659740130009950221305870670141912895} a^{6} + \frac{721906843121903998837156795791919811761663542}{1564186440931948026001990044261174134028382579} a^{5} - \frac{50657294883625842724642433056451902493605561}{1564186440931948026001990044261174134028382579} a^{4} - \frac{1872901026044317218509993744714195889369359773}{7820932204659740130009950221305870670141912895} a^{3} - \frac{606341118313655548297233408638933096773889054}{1564186440931948026001990044261174134028382579} a^{2} - \frac{2611973309910868997105113106191908080193604578}{7820932204659740130009950221305870670141912895} a + \frac{486436671457631321419175331762499564495653376}{1564186440931948026001990044261174134028382579}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15968978260.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n671 are not computed |
| Character table for t20n671 is not computed |
Intermediate fields
| 5.5.89417.1, 10.10.714924671874713.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 89417 | Data not computed | ||||||