Normalized defining polynomial
\( x^{20} - 8 x^{19} + 17 x^{18} + 45 x^{17} - 365 x^{16} + 1422 x^{15} - 4484 x^{14} + 4961 x^{13} + 10706 x^{12} - 9731 x^{11} - 41922 x^{10} - 60932 x^{9} + 428148 x^{8} - 428679 x^{7} - 514417 x^{6} + 1389564 x^{5} - 509143 x^{4} - 1026653 x^{3} + 807854 x^{2} + 114306 x - 163831 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45702574402961582626142131083938873=89417^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $89417$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{17} + \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{762720989312516928076641433991458009825291870538524262691693} a^{19} - \frac{14940986474190412447078555157125844389107335988363233301859}{254240329770838976025547144663819336608430623512841420897231} a^{18} + \frac{307220385406131302488324902155134233985134940787006763196745}{762720989312516928076641433991458009825291870538524262691693} a^{17} + \frac{13254079655876899576043713248372563061781832393485485393194}{69338271755683357097876493999223455438662897321684023881063} a^{16} - \frac{8560111618834799509131777691449242051601178555364285029268}{84746776590279658675182381554606445536143541170947140299077} a^{15} - \frac{28703615734792907123164905610365867794493793717049438942303}{84746776590279658675182381554606445536143541170947140299077} a^{14} + \frac{374248379354789027246698834007029047414560154980864479284430}{762720989312516928076641433991458009825291870538524262691693} a^{13} - \frac{82269662029928052567555484249219693908327589251208905320846}{762720989312516928076641433991458009825291870538524262691693} a^{12} + \frac{58103378046559565482818522294545769312389230048348098171583}{762720989312516928076641433991458009825291870538524262691693} a^{11} - \frac{45061207316363334333855173996069268050006023469343860162399}{254240329770838976025547144663819336608430623512841420897231} a^{10} + \frac{46282782352367248594224085499455453574329241611682879485277}{254240329770838976025547144663819336608430623512841420897231} a^{9} - \frac{247266454763360544279705388860153294283104849249794249352338}{762720989312516928076641433991458009825291870538524262691693} a^{8} - \frac{327663470750989799230227214900155735443705433190709043699925}{762720989312516928076641433991458009825291870538524262691693} a^{7} + \frac{178066931390807881606771877695814048589619180030748847635014}{762720989312516928076641433991458009825291870538524262691693} a^{6} + \frac{53506215295738500461323855356051738389265004177982419667065}{762720989312516928076641433991458009825291870538524262691693} a^{5} + \frac{313351371852676457790728787979739217372738521041562700920939}{762720989312516928076641433991458009825291870538524262691693} a^{4} + \frac{11543941893347199760356632688655992349460222203171284318652}{23112757251894452365958831333074485146220965773894674627021} a^{3} - \frac{1252499681300384343305401622092100728701034524115799594357}{762720989312516928076641433991458009825291870538524262691693} a^{2} - \frac{376052302974083037449809654875026650057091766385671427778480}{762720989312516928076641433991458009825291870538524262691693} a + \frac{270918920026837039579815649011858548936391780356156335120670}{762720989312516928076641433991458009825291870538524262691693}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52804417124.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n671 are not computed |
| Character table for t20n671 is not computed |
Intermediate fields
| 5.5.89417.1, 10.10.714924671874713.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | $16{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 89417 | Data not computed | ||||||