Properties

Label 20.12.4520516014...2976.4
Degree $20$
Signature $[12, 4]$
Discriminant $2^{20}\cdot 401^{11}$
Root discriminant $54.05$
Ramified primes $2, 401$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T350

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![401, 0, -2005, 0, 3428, 0, -1682, 0, -1254, 0, 1228, 0, 114, 0, -227, 0, -14, 0, 11, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 11*x^18 - 14*x^16 - 227*x^14 + 114*x^12 + 1228*x^10 - 1254*x^8 - 1682*x^6 + 3428*x^4 - 2005*x^2 + 401)
 
gp: K = bnfinit(x^20 + 11*x^18 - 14*x^16 - 227*x^14 + 114*x^12 + 1228*x^10 - 1254*x^8 - 1682*x^6 + 3428*x^4 - 2005*x^2 + 401, 1)
 

Normalized defining polynomial

\( x^{20} + 11 x^{18} - 14 x^{16} - 227 x^{14} + 114 x^{12} + 1228 x^{10} - 1254 x^{8} - 1682 x^{6} + 3428 x^{4} - 2005 x^{2} + 401 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(45205160142537061919431122643582976=2^{20}\cdot 401^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $54.05$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 401$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{8} - \frac{1}{3} a^{6} + \frac{4}{9} a^{4} - \frac{1}{3} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{9} - \frac{1}{3} a^{7} + \frac{4}{9} a^{5} - \frac{1}{3} a^{3} + \frac{1}{9} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} - \frac{1}{3} a^{8} + \frac{4}{9} a^{6} - \frac{1}{3} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{11} - \frac{1}{3} a^{9} + \frac{4}{9} a^{7} - \frac{1}{3} a^{5} + \frac{1}{9} a^{3}$, $\frac{1}{747} a^{16} - \frac{2}{249} a^{14} + \frac{22}{747} a^{12} - \frac{32}{83} a^{10} - \frac{11}{747} a^{8} + \frac{19}{83} a^{6} - \frac{32}{747} a^{4} + \frac{64}{249} a^{2} + \frac{67}{249}$, $\frac{1}{747} a^{17} - \frac{2}{249} a^{15} + \frac{22}{747} a^{13} - \frac{32}{83} a^{11} - \frac{11}{747} a^{9} + \frac{19}{83} a^{7} - \frac{32}{747} a^{5} + \frac{64}{249} a^{3} + \frac{67}{249} a$, $\frac{1}{39591} a^{18} + \frac{13}{39591} a^{16} + \frac{163}{13197} a^{14} - \frac{2111}{39591} a^{12} + \frac{3595}{13197} a^{10} + \frac{4195}{39591} a^{8} + \frac{2096}{13197} a^{6} + \frac{82}{39591} a^{4} + \frac{5924}{39591} a^{2} + \frac{3016}{13197}$, $\frac{1}{39591} a^{19} + \frac{13}{39591} a^{17} + \frac{163}{13197} a^{15} - \frac{2111}{39591} a^{13} + \frac{3595}{13197} a^{11} + \frac{4195}{39591} a^{9} + \frac{2096}{13197} a^{7} + \frac{82}{39591} a^{5} + \frac{5924}{39591} a^{3} + \frac{3016}{13197} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 16381724252.4 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T350:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 104 conjugacy class representatives for t20n350 are not computed
Character table for t20n350 is not computed

Intermediate fields

\(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.5$x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2]^{10}$
2.10.10.6$x^{10} - 5 x^{8} - 18 x^{6} - 46 x^{4} + 49 x^{2} - 13$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2]^{10}$
401Data not computed