Normalized defining polynomial
\( x^{20} - 4 x^{19} - 10 x^{18} + 52 x^{17} - 70 x^{16} + 28 x^{15} + 1406 x^{14} - 4800 x^{13} - 727 x^{12} + 15684 x^{11} - 5674 x^{10} - 16280 x^{9} + 4480 x^{8} + 5232 x^{7} + 3832 x^{6} - 300 x^{5} - 2937 x^{4} - 328 x^{3} + 408 x^{2} + 32 x - 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(444312845384859473286477479739392=2^{16}\cdot 17^{3}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} + \frac{3}{16} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{5} + \frac{3}{16} a^{4} + \frac{1}{8} a^{3} - \frac{1}{16} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{3}{16} a^{9} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{3}{16} a^{5} - \frac{1}{4} a^{4} - \frac{3}{16} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{48} a^{16} - \frac{1}{48} a^{14} + \frac{1}{24} a^{13} + \frac{1}{24} a^{12} - \frac{1}{24} a^{11} - \frac{1}{16} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{5}{24} a^{7} - \frac{1}{16} a^{6} - \frac{1}{24} a^{5} + \frac{1}{48} a^{4} + \frac{7}{24} a^{3} - \frac{5}{24} a^{2} - \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{240} a^{17} - \frac{1}{60} a^{15} - \frac{1}{240} a^{14} - \frac{13}{240} a^{13} + \frac{13}{240} a^{12} - \frac{1}{80} a^{11} - \frac{3}{40} a^{10} - \frac{11}{80} a^{9} + \frac{5}{48} a^{8} + \frac{3}{80} a^{7} - \frac{19}{120} a^{6} - \frac{19}{120} a^{5} + \frac{29}{240} a^{4} - \frac{19}{240} a^{3} + \frac{59}{240} a^{2} + \frac{13}{60} a + \frac{1}{20}$, $\frac{1}{720} a^{18} + \frac{1}{720} a^{16} + \frac{7}{360} a^{15} - \frac{1}{40} a^{14} + \frac{1}{90} a^{13} + \frac{37}{720} a^{12} - \frac{11}{90} a^{11} + \frac{1}{60} a^{10} - \frac{1}{36} a^{9} - \frac{17}{240} a^{8} + \frac{1}{10} a^{7} - \frac{173}{720} a^{6} - \frac{7}{90} a^{5} + \frac{49}{180} a^{4} + \frac{3}{40} a^{3} + \frac{91}{360} a^{2} - \frac{8}{45} a + \frac{5}{18}$, $\frac{1}{8526632732369682320160} a^{19} + \frac{2349640979077952909}{4263316366184841160080} a^{18} + \frac{1715626994321456119}{2131658183092420580040} a^{17} - \frac{10495643992065187393}{1421105455394947053360} a^{16} + \frac{82868880005252960917}{4263316366184841160080} a^{15} + \frac{11340507334249271069}{532914545773105145010} a^{14} - \frac{13737691379446577249}{236850909232491175560} a^{13} + \frac{52952879944818529993}{1421105455394947053360} a^{12} + \frac{339580516988945142023}{8526632732369682320160} a^{11} - \frac{63545433360007626101}{2131658183092420580040} a^{10} + \frac{195143807603956877843}{1065829091546210290020} a^{9} - \frac{155583634969865226011}{1421105455394947053360} a^{8} - \frac{974665480399610019601}{4263316366184841160080} a^{7} - \frac{83449387969067031235}{852663273236968232016} a^{6} + \frac{285340891972678923347}{2131658183092420580040} a^{5} - \frac{601248629345364832277}{2131658183092420580040} a^{4} - \frac{455073679023498127651}{8526632732369682320160} a^{3} + \frac{5589547692042631033}{236850909232491175560} a^{2} + \frac{278995900800661681903}{710552727697473526680} a - \frac{52391936832302677889}{106582909154621029002}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7423969450.79 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 128 conjugacy class representatives for t20n513 are not computed |
| Character table for t20n513 is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), 5.5.2382032.1, 10.10.300726051798272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $53$ | 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |