Normalized defining polynomial
\( x^{20} - 1012 x^{18} - 160446 x^{16} + 230124576 x^{14} - 1929332416 x^{12} - 12504794909838 x^{10} + 286196363372546 x^{8} + 196854919587541710 x^{6} - 7056313724597572776 x^{4} - 627852139000069896440 x^{2} + 14330725072676595386243 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43638965741625483308617553270102089623548879194554368=2^{36}\cdot 11^{10}\cdot 83^{7}\cdot 983^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $428.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{11} a^{2}$, $\frac{1}{11} a^{3}$, $\frac{1}{121} a^{4}$, $\frac{1}{121} a^{5}$, $\frac{1}{1331} a^{6}$, $\frac{1}{1331} a^{7}$, $\frac{1}{14641} a^{8}$, $\frac{1}{14641} a^{9}$, $\frac{1}{161051} a^{10}$, $\frac{1}{161051} a^{11}$, $\frac{1}{1771561} a^{12}$, $\frac{1}{1771561} a^{13}$, $\frac{1}{19487171} a^{14}$, $\frac{1}{19487171} a^{15}$, $\frac{1}{926934317321177} a^{16} - \frac{2121406}{84266756120107} a^{14} + \frac{80263}{7660614192737} a^{12} - \frac{806172}{696419472067} a^{10} - \frac{17272}{523230257} a^{8} + \frac{27790}{5755532827} a^{6} + \frac{4166}{523230257} a^{4} + \frac{2149}{48389} a^{2} - \frac{2}{53}$, $\frac{1}{926934317321177} a^{17} - \frac{2121406}{84266756120107} a^{15} + \frac{80263}{7660614192737} a^{13} - \frac{806172}{696419472067} a^{11} - \frac{17272}{523230257} a^{9} + \frac{27790}{5755532827} a^{7} + \frac{4166}{523230257} a^{5} + \frac{2149}{48389} a^{3} - \frac{2}{53} a$, $\frac{1}{125745484309043347672962842865922659495410557578513605819278} a^{18} + \frac{5357852935327120689686460500198273850490429}{11431407664458486152087531169629332681400959779864873256298} a^{16} + \frac{11590036361435942682038399583031443574408392752183}{1039218878587135104735230106329939334672814525442261205118} a^{14} + \frac{7783834087465474249291255414080774924880656253605}{94474443507921373157748191484539939515710411403841927738} a^{12} + \frac{12739306763881331621975341232974179388802722461557}{8588585773447397559795290134958176319610037400349266158} a^{10} + \frac{26319579782888462068333972322241391926857858954517}{780780524858854323617753648632561483600912490940842378} a^{8} + \frac{9368738179718696655223618265812208552965863762337}{70980047714441302147068513512051043963719317358258398} a^{6} + \frac{6615712340098340771662304011377396696768390902125}{6452731610403754740642592137459185814883574305296218} a^{4} + \frac{161584339142622708320954016858239042024504079}{7189841333784695508911731792564712728524649942} a^{2} - \frac{29172947091644393060995950874210574619833}{7874963125722558060144284548263650305065334}$, $\frac{1}{125745484309043347672962842865922659495410557578513605819278} a^{19} + \frac{5357852935327120689686460500198273850490429}{11431407664458486152087531169629332681400959779864873256298} a^{17} + \frac{11590036361435942682038399583031443574408392752183}{1039218878587135104735230106329939334672814525442261205118} a^{15} + \frac{7783834087465474249291255414080774924880656253605}{94474443507921373157748191484539939515710411403841927738} a^{13} + \frac{12739306763881331621975341232974179388802722461557}{8588585773447397559795290134958176319610037400349266158} a^{11} + \frac{26319579782888462068333972322241391926857858954517}{780780524858854323617753648632561483600912490940842378} a^{9} + \frac{9368738179718696655223618265812208552965863762337}{70980047714441302147068513512051043963719317358258398} a^{7} + \frac{6615712340098340771662304011377396696768390902125}{6452731610403754740642592137459185814883574305296218} a^{5} + \frac{161584339142622708320954016858239042024504079}{7189841333784695508911731792564712728524649942} a^{3} - \frac{29172947091644393060995950874210574619833}{7874963125722558060144284548263650305065334} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3574628519920000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n807 are not computed |
| Character table for t20n807 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||