Normalized defining polynomial
\( x^{20} - 5680 x^{18} + 14020930 x^{16} - 19736095850 x^{14} + 17469170847825 x^{12} - 10102154439305000 x^{10} + 3834786993819768625 x^{8} - 933272710766328395625 x^{6} + 137377792648080355178125 x^{4} - 10873455887817253368515625 x^{2} + 349861680657101806869390625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(434073807522026850838993805941780627654560000000000000000=2^{20}\cdot 3^{12}\cdot 5^{16}\cdot 691^{4}\cdot 5309^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $679.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 691, 5309$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{132725} a^{10} - \frac{371}{132725} a^{8} + \frac{1034}{26545} a^{6} + \frac{1094}{26545} a^{4} + \frac{2067}{5309} a^{2}$, $\frac{1}{132725} a^{11} - \frac{371}{132725} a^{9} + \frac{1034}{26545} a^{7} + \frac{1094}{26545} a^{5} + \frac{2067}{5309} a^{3}$, $\frac{1}{3523185125} a^{12} - \frac{1136}{704637025} a^{10} + \frac{2804186}{704637025} a^{8} - \frac{250366}{140927405} a^{6} - \frac{7611039}{140927405} a^{4} + \frac{1664}{5309} a^{2}$, $\frac{1}{3523185125} a^{13} - \frac{1136}{704637025} a^{11} + \frac{2804186}{704637025} a^{9} - \frac{250366}{140927405} a^{7} - \frac{7611039}{140927405} a^{5} + \frac{1664}{5309} a^{3}$, $\frac{1}{56113769485875} a^{14} - \frac{1136}{11222753897175} a^{12} + \frac{2804186}{11222753897175} a^{10} + \frac{145689499459}{11222753897175} a^{8} - \frac{49416759232}{2244550779435} a^{6} - \frac{40812581}{422782215} a^{4} + \frac{889}{5309} a^{2} - \frac{1}{3}$, $\frac{1}{280568847429375} a^{15} - \frac{1136}{56113769485875} a^{13} + \frac{2804186}{56113769485875} a^{11} - \frac{150426162463}{11222753897175} a^{9} - \frac{49416759232}{11222753897175} a^{7} + \frac{25660061}{422782215} a^{5} + \frac{6198}{26545} a^{3} + \frac{1}{3} a$, $\frac{1}{1489540011002551875} a^{16} - \frac{1136}{297908002200510375} a^{14} + \frac{2804186}{297908002200510375} a^{12} - \frac{150426162463}{59581600440102075} a^{10} + \frac{850635328646633}{59581600440102075} a^{8} - \frac{44366472514}{2244550779435} a^{6} + \frac{13257462}{140927405} a^{4} - \frac{224}{15927} a^{2}$, $\frac{1}{1489540011002551875} a^{17} - \frac{371}{1489540011002551875} a^{15} - \frac{3226838}{297908002200510375} a^{13} - \frac{737243388841}{297908002200510375} a^{11} + \frac{17340944043522}{19860533480034025} a^{9} - \frac{90416373934}{3740917965725} a^{7} - \frac{19123996}{422782215} a^{5} + \frac{17474}{79635} a^{3} + \frac{1}{3} a$, $\frac{1}{6959646402229167233827899649227833797452984040803449259375} a^{18} - \frac{49070325145617491607623154402069585847}{198847040063690492395082847120795251355799544022955693125} a^{16} + \frac{1259472554702493662820392808299513172112463}{198847040063690492395082847120795251355799544022955693125} a^{14} - \frac{17995782346972929312518332755532069555596728551}{278385856089166689353115985969113351898119361632137970375} a^{12} - \frac{924608422250320503056552514553432586440149356472262}{278385856089166689353115985969113351898119361632137970375} a^{10} - \frac{195844915124900479457628924513833932222863594597446}{10487317991680794475536484685218058086197753310685175} a^{8} - \frac{89003932043328324361218312821772089733748914791}{1975384816666188448961477620120184231719298043075} a^{6} - \frac{109939881022962499064549723908604914630714}{4961097046942144657403095674314520579441949} a^{4} - \frac{670825456433203027498663701928173761914}{2803407636245325668150176497069798782883} a^{2} + \frac{54557982478091650019698907489116951}{528048151487158724458499999448069087}$, $\frac{1}{6959646402229167233827899649227833797452984040803449259375} a^{19} - \frac{49070325145617491607623154402069585847}{198847040063690492395082847120795251355799544022955693125} a^{17} - \frac{52661248141277794050640080501545188290317}{66282346687896830798360949040265083785266514674318564375} a^{15} - \frac{2241389952106792216966166461163159599701540141}{92795285363055563117705328656371117299373120544045990125} a^{13} - \frac{190486420003534702554616325809315852570263071773858}{55677171217833337870623197193822670379623872326427594075} a^{11} + \frac{17058463980333792946007878354612652910717657283288}{2097463598336158895107296937043611617239550662137035} a^{9} - \frac{4773843097779951160688602008180478739601880489}{131692321111079229930765174674678948781286536205} a^{7} + \frac{4201027740083507428716173194756208615775599}{74416455704132169861046435114717808691629235} a^{5} + \frac{4117226013225793654869997982549860702393}{14017038181226628340750882485348993914415} a^{3} + \frac{230574032973811224839198907305139980}{528048151487158724458499999448069087} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1045386115320000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.5438807015625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | $16{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.6.6.5 | $x^{6} + 6 x^{3} + 9 x^{2} + 9$ | $3$ | $2$ | $6$ | $S_3^2$ | $[3/2, 3/2]_{2}^{2}$ | |
| 3.6.6.5 | $x^{6} + 6 x^{3} + 9 x^{2} + 9$ | $3$ | $2$ | $6$ | $S_3^2$ | $[3/2, 3/2]_{2}^{2}$ | |
| $5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 691 | Data not computed | ||||||
| 5309 | Data not computed | ||||||