/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^20 - 16*x^18 + 35*x^16 + 297*x^14 - 951*x^12 + 575*x^10 + 325*x^8 - 245*x^6 - 50*x^4 + 25*x^2 + 5, 20, 802, [12, 4], 42279623745384992000000000000000, [2, 5, 6029], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, a^14, a^15, 1/17*a^16 - 6/17*a^14 - 2/17*a^12 + 3/17*a^10 + 2/17*a^8 + 1/17*a^6 + 7/17*a^4 + 1/17*a^2 + 2/17, 1/17*a^17 - 6/17*a^15 - 2/17*a^13 + 3/17*a^11 + 2/17*a^9 + 1/17*a^7 + 7/17*a^5 + 1/17*a^3 + 2/17*a, 1/1344208853*a^18 - 36155503/1344208853*a^16 - 360225894/1344208853*a^14 + 416564193/1344208853*a^12 + 36778381/103400681*a^10 + 624395060/1344208853*a^8 + 199903705/1344208853*a^6 + 363988844/1344208853*a^4 - 216660798/1344208853*a^2 + 182257138/1344208853, 1/1344208853*a^19 - 36155503/1344208853*a^17 - 360225894/1344208853*a^15 + 416564193/1344208853*a^13 + 36778381/103400681*a^11 + 624395060/1344208853*a^9 + 199903705/1344208853*a^7 + 363988844/1344208853*a^5 - 216660798/1344208853*a^3 + 182257138/1344208853*a], 0, 1, [], 1, [ (36639418)/(1344208853)*a^(18) - (581421261)/(1344208853)*a^(16) + (1203561365)/(1344208853)*a^(14) + (11079477989)/(1344208853)*a^(12) - (2574606041)/(103400681)*a^(10) + (15901815609)/(1344208853)*a^(8) + (16292502106)/(1344208853)*a^(6) - (7570494835)/(1344208853)*a^(4) - (5196342155)/(1344208853)*a^(2) + (168657651)/(1344208853) , (1445089839)/(1344208853)*a^(18) - (22694822526)/(1344208853)*a^(16) + (44061871065)/(1344208853)*a^(14) + (439321829909)/(1344208853)*a^(12) - (95314153308)/(103400681)*a^(10) + (521171205354)/(1344208853)*a^(8) + (467849458971)/(1344208853)*a^(6) - (155719073103)/(1344208853)*a^(4) - (54695195211)/(1344208853)*a^(2) + (2431977994)/(1344208853) , (1119525491)/(1344208853)*a^(18) - (17496517808)/(1344208853)*a^(16) + (32825207923)/(1344208853)*a^(14) + (342467703237)/(1344208853)*a^(12) - (71776050112)/(103400681)*a^(10) + (339993064351)/(1344208853)*a^(8) + (368219587742)/(1344208853)*a^(6) - (83031435434)/(1344208853)*a^(4) - (47161482802)/(1344208853)*a^(2) - (152928584)/(79071109) , (1445089839)/(1344208853)*a^(18) - (22694822526)/(1344208853)*a^(16) + (44061871065)/(1344208853)*a^(14) + (439321829909)/(1344208853)*a^(12) - (95314153308)/(103400681)*a^(10) + (521171205354)/(1344208853)*a^(8) + (467849458971)/(1344208853)*a^(6) - (155719073103)/(1344208853)*a^(4) - (54695195211)/(1344208853)*a^(2) + (1087769141)/(1344208853) , (1482024)/(36329969)*a^(18) - (29646044)/(36329969)*a^(16) + (144305386)/(36329969)*a^(14) + (271383698)/(36329969)*a^(12) - (249359735)/(2794613)*a^(10) + (5725412466)/(36329969)*a^(8) - (920818693)/(36329969)*a^(6) - (2914459492)/(36329969)*a^(4) + (628609988)/(36329969)*a^(2) + (355996944)/(36329969) , (8865646)/(79071109)*a^(18) - (1992427938)/(1344208853)*a^(16) - (1294573282)/(1344208853)*a^(14) + (57378144453)/(1344208853)*a^(12) - (1216473453)/(103400681)*a^(10) - (268861227216)/(1344208853)*a^(8) + (194741839501)/(1344208853)*a^(6) + (91401513032)/(1344208853)*a^(4) - (44807069089)/(1344208853)*a^(2) - (11379057692)/(1344208853) , (34872867)/(1344208853)*a^(18) - (1469300256)/(1344208853)*a^(16) + (15522658171)/(1344208853)*a^(14) - (17280876829)/(1344208853)*a^(12) - (23873580037)/(103400681)*a^(10) + (798037489323)/(1344208853)*a^(8) - (311988240145)/(1344208853)*a^(6) - (297782713871)/(1344208853)*a^(4) + (89284095151)/(1344208853)*a^(2) + (34837376204)/(1344208853) , (236106476)/(1344208853)*a^(18) - (4510449259)/(1344208853)*a^(16) + (19775360108)/(1344208853)*a^(14) + (47734684526)/(1344208853)*a^(12) - (34416838962)/(103400681)*a^(10) + (765600313788)/(1344208853)*a^(8) - (186013712149)/(1344208853)*a^(6) - (303674016402)/(1344208853)*a^(4) + (71334781221)/(1344208853)*a^(2) + (35518520606)/(1344208853) , (398546773)/(1344208853)*a^(18) - (6216963604)/(1344208853)*a^(16) + (11568227578)/(1344208853)*a^(14) + (121219961310)/(1344208853)*a^(12) - (25112008134)/(103400681)*a^(10) + (130737756724)/(1344208853)*a^(8) + (76804018825)/(1344208853)*a^(6) + (10631903930)/(1344208853)*a^(4) - (14883775091)/(1344208853)*a^(2) - (4730392357)/(1344208853) , (240928735)/(103400681)*a^(19) + (2580260090)/(1344208853)*a^(18) - (3762785711)/(103400681)*a^(17) - (39770761143)/(1344208853)*a^(16) + (7022805477)/(103400681)*a^(15) + (66911696036)/(1344208853)*a^(14) + (73796104442)/(103400681)*a^(13) + (47453401581)/(79071109)*a^(12) - (200070389161)/(103400681)*a^(11) - (152543408855)/(103400681)*a^(10) + (4158277126)/(6082393)*a^(9) + (299550832063)/(1344208853)*a^(8) + (81327085484)/(103400681)*a^(7) + (63487645609)/(79071109)*a^(6) - (18229353688)/(103400681)*a^(5) - (38260610229)/(1344208853)*a^(4) - (10237893114)/(103400681)*a^(3) - (164283018005)/(1344208853)*a^(2) - (355249043)/(103400681)*a - (24289190897)/(1344208853) , (36639418)/(1344208853)*a^(19) + (1119525491)/(1344208853)*a^(18) - (581421261)/(1344208853)*a^(17) - (17496517808)/(1344208853)*a^(16) + (1203561365)/(1344208853)*a^(15) + (32825207923)/(1344208853)*a^(14) + (11079477989)/(1344208853)*a^(13) + (342467703237)/(1344208853)*a^(12) - (2574606041)/(103400681)*a^(11) - (71776050112)/(103400681)*a^(10) + (15901815609)/(1344208853)*a^(9) + (339993064351)/(1344208853)*a^(8) + (16292502106)/(1344208853)*a^(7) + (368219587742)/(1344208853)*a^(6) - (7570494835)/(1344208853)*a^(5) - (83031435434)/(1344208853)*a^(4) - (5196342155)/(1344208853)*a^(3) - (47161482802)/(1344208853)*a^(2) + (168657651)/(1344208853)*a - (231999693)/(79071109) , (1774675037)/(1344208853)*a^(19) + (959047500)/(1344208853)*a^(18) - (27797126171)/(1344208853)*a^(17) - (14788576534)/(1344208853)*a^(16) + (53014999976)/(1344208853)*a^(15) + (25043232133)/(1344208853)*a^(14) + (540786615165)/(1344208853)*a^(13) + (17560005176)/(79071109)*a^(12) - (115176474083)/(103400681)*a^(11) - (56704448134)/(103400681)*a^(10) + (595521540421)/(1344208853)*a^(9) + (139444413899)/(1344208853)*a^(8) + (546765493448)/(1344208853)*a^(7) + (20292993242)/(79071109)*a^(6) - (140488365144)/(1344208853)*a^(5) - (1486791075)/(1344208853)*a^(4) - (3693263035)/(79071109)*a^(3) - (49528884364)/(1344208853)*a^(2) - (1524044831)/(1344208853)*a - (8413945023)/(1344208853) , (620530480)/(1344208853)*a^(19) + (36639418)/(1344208853)*a^(18) - (8457498906)/(1344208853)*a^(17) - (581421261)/(1344208853)*a^(16) - (1301825573)/(1344208853)*a^(15) + (1203561365)/(1344208853)*a^(14) + (227866136525)/(1344208853)*a^(13) + (11079477989)/(1344208853)*a^(12) - (10795727999)/(103400681)*a^(11) - (2574606041)/(103400681)*a^(10) - (879759336826)/(1344208853)*a^(9) + (15901815609)/(1344208853)*a^(8) + (659608533075)/(1344208853)*a^(7) + (16292502106)/(1344208853)*a^(6) + (354246425849)/(1344208853)*a^(5) - (7570494835)/(1344208853)*a^(4) - (152024041800)/(1344208853)*a^(3) - (5196342155)/(1344208853)*a^(2) - (3034232044)/(79071109)*a - (1175551202)/(1344208853) , (1957966977)/(1344208853)*a^(19) - (350436841)/(1344208853)*a^(18) - (1761704918)/(79071109)*a^(17) + (5547646735)/(1344208853)*a^(16) + (47163004541)/(1344208853)*a^(15) - (665192118)/(79071109)*a^(14) + (619106805451)/(1344208853)*a^(13) - (106299698758)/(1344208853)*a^(12) - (110336912919)/(103400681)*a^(11) + (24327590439)/(103400681)*a^(10) + (29895595680)/(1344208853)*a^(9) - (143586947390)/(1344208853)*a^(8) + (892177202415)/(1344208853)*a^(7) - (161510012470)/(1344208853)*a^(6) + (67805480382)/(1344208853)*a^(5) + (90781366847)/(1344208853)*a^(4) - (156305655092)/(1344208853)*a^(3) + (15391903569)/(1344208853)*a^(2) - (31666439347)/(1344208853)*a - (4806286769)/(1344208853) , (3030165290)/(1344208853)*a^(19) - (4105840064)/(1344208853)*a^(18) - (46272233200)/(1344208853)*a^(17) + (63407877969)/(1344208853)*a^(16) + (71689899679)/(1344208853)*a^(15) - (108346118034)/(1344208853)*a^(14) + (961852478888)/(1344208853)*a^(13) - (1280714658450)/(1344208853)*a^(12) - (169118589786)/(103400681)*a^(11) + (245663404051)/(103400681)*a^(10) - (47849591321)/(1344208853)*a^(9) - (564383663028)/(1344208853)*a^(8) + (1471958523928)/(1344208853)*a^(7) - (1701805024050)/(1344208853)*a^(6) + (121956762169)/(1344208853)*a^(5) + (81312425716)/(1344208853)*a^(4) - (273475110130)/(1344208853)*a^(3) + (271733469725)/(1344208853)*a^(2) - (55925827222)/(1344208853)*a + (41451293054)/(1344208853) ], 428735888.08, [[x^2 - x - 1, 1], [x^5 - x^4 - 7*x^3 + 7*x^2 + 6*x - 1, 1], [x^10 - 5*x^9 + x^8 + 26*x^7 - 24*x^6 - 40*x^5 + 45*x^4 + 17*x^3 - 23*x^2 + 2*x + 1, 1]]]