Properties

Label 20.12.4086788182...0625.1
Degree $20$
Signature $[12, 4]$
Discriminant $3^{4}\cdot 5^{14}\cdot 23^{6}\cdot 89^{5}$
Root discriminant $30.24$
Ramified primes $3, 5, 23, 89$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T887

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![191, -1517, 1812, 4696, 4345, -7578, -14437, 10081, 7563, -8154, 1148, 2866, -1733, -289, 492, -77, -77, 38, 4, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 + 4*x^18 + 38*x^17 - 77*x^16 - 77*x^15 + 492*x^14 - 289*x^13 - 1733*x^12 + 2866*x^11 + 1148*x^10 - 8154*x^9 + 7563*x^8 + 10081*x^7 - 14437*x^6 - 7578*x^5 + 4345*x^4 + 4696*x^3 + 1812*x^2 - 1517*x + 191)
 
gp: K = bnfinit(x^20 - 6*x^19 + 4*x^18 + 38*x^17 - 77*x^16 - 77*x^15 + 492*x^14 - 289*x^13 - 1733*x^12 + 2866*x^11 + 1148*x^10 - 8154*x^9 + 7563*x^8 + 10081*x^7 - 14437*x^6 - 7578*x^5 + 4345*x^4 + 4696*x^3 + 1812*x^2 - 1517*x + 191, 1)
 

Normalized defining polynomial

\( x^{20} - 6 x^{19} + 4 x^{18} + 38 x^{17} - 77 x^{16} - 77 x^{15} + 492 x^{14} - 289 x^{13} - 1733 x^{12} + 2866 x^{11} + 1148 x^{10} - 8154 x^{9} + 7563 x^{8} + 10081 x^{7} - 14437 x^{6} - 7578 x^{5} + 4345 x^{4} + 4696 x^{3} + 1812 x^{2} - 1517 x + 191 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(408678818272014026129150390625=3^{4}\cdot 5^{14}\cdot 23^{6}\cdot 89^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $30.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 23, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{733271754081217049826367350003033821} a^{19} - \frac{29392148827927492312414123649585101}{733271754081217049826367350003033821} a^{18} + \frac{285352696792625297904719168198415453}{733271754081217049826367350003033821} a^{17} + \frac{356447032173464515654645255316607076}{733271754081217049826367350003033821} a^{16} - \frac{31839604413612909847951070533104554}{733271754081217049826367350003033821} a^{15} + \frac{328334452140323808544911378783342096}{733271754081217049826367350003033821} a^{14} - \frac{51522865938380239192809607901593205}{733271754081217049826367350003033821} a^{13} - \frac{37890027624307099440025046691912802}{733271754081217049826367350003033821} a^{12} + \frac{250466293568109590742835186877443121}{733271754081217049826367350003033821} a^{11} - \frac{328370749537064578146267555086880689}{733271754081217049826367350003033821} a^{10} - \frac{155384055229911998603382935606089495}{733271754081217049826367350003033821} a^{9} - \frac{291506395544806687207806511970198828}{733271754081217049826367350003033821} a^{8} + \frac{6432773629118657853204541844081862}{733271754081217049826367350003033821} a^{7} + \frac{167286480111567963913715687485164064}{733271754081217049826367350003033821} a^{6} + \frac{307620177029231372137548940508610451}{733271754081217049826367350003033821} a^{5} - \frac{322418372279482472944846945256345802}{733271754081217049826367350003033821} a^{4} - \frac{103166721802545386091178224644726016}{733271754081217049826367350003033821} a^{3} - \frac{95372554840594939836183445347170759}{733271754081217049826367350003033821} a^{2} + \frac{302727069901336876254098400505573272}{733271754081217049826367350003033821} a + \frac{348959483447167127820923254924609528}{733271754081217049826367350003033821}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 32216705.7563 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T887:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 245760
The 201 conjugacy class representatives for t20n887 are not computed
Character table for t20n887 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ R R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.12.0.1$x^{12} - x^{4} - x^{3} - x^{2} + x - 1$$1$$12$$0$$C_{12}$$[\ ]^{12}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.12.10.1$x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$$6$$2$$10$$D_6$$[\ ]_{6}^{2}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
89Data not computed