Properties

Label 20.12.4005869174...0000.1
Degree $20$
Signature $[12, 4]$
Discriminant $2^{20}\cdot 5^{10}\cdot 13^{8}\cdot 19^{4}\cdot 60662149^{2}$
Root discriminant $134.94$
Ramified primes $2, 5, 13, 19, 60662149$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1030

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![106306843291441, 0, -47343128591330, 0, 9311802693856, 0, -1064005067775, 0, 78102567868, 0, -3839138862, 0, 127489037, 0, -2808026, 0, 38949, 0, -304, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 304*x^18 + 38949*x^16 - 2808026*x^14 + 127489037*x^12 - 3839138862*x^10 + 78102567868*x^8 - 1064005067775*x^6 + 9311802693856*x^4 - 47343128591330*x^2 + 106306843291441)
 
gp: K = bnfinit(x^20 - 304*x^18 + 38949*x^16 - 2808026*x^14 + 127489037*x^12 - 3839138862*x^10 + 78102567868*x^8 - 1064005067775*x^6 + 9311802693856*x^4 - 47343128591330*x^2 + 106306843291441, 1)
 

Normalized defining polynomial

\( x^{20} - 304 x^{18} + 38949 x^{16} - 2808026 x^{14} + 127489037 x^{12} - 3839138862 x^{10} + 78102567868 x^{8} - 1064005067775 x^{6} + 9311802693856 x^{4} - 47343128591330 x^{2} + 106306843291441 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4005869174343660274328698855843840000000000=2^{20}\cdot 5^{10}\cdot 13^{8}\cdot 19^{4}\cdot 60662149^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $134.94$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13, 19, 60662149$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{13} a^{6} - \frac{5}{13} a^{4} + \frac{1}{13} a^{2}$, $\frac{1}{13} a^{7} - \frac{5}{13} a^{5} + \frac{1}{13} a^{3}$, $\frac{1}{169} a^{8} - \frac{5}{169} a^{6} - \frac{64}{169} a^{4} + \frac{3}{13} a^{2}$, $\frac{1}{169} a^{9} - \frac{5}{169} a^{7} - \frac{64}{169} a^{5} + \frac{3}{13} a^{3}$, $\frac{1}{2197} a^{10} - \frac{5}{2197} a^{8} - \frac{64}{2197} a^{6} - \frac{75}{169} a^{4} - \frac{1}{13} a^{2}$, $\frac{1}{2197} a^{11} - \frac{5}{2197} a^{9} - \frac{64}{2197} a^{7} - \frac{75}{169} a^{5} - \frac{1}{13} a^{3}$, $\frac{1}{28561} a^{12} - \frac{5}{28561} a^{10} - \frac{64}{28561} a^{8} - \frac{75}{2197} a^{6} - \frac{53}{169} a^{4} + \frac{6}{13} a^{2}$, $\frac{1}{28561} a^{13} - \frac{5}{28561} a^{11} - \frac{64}{28561} a^{9} - \frac{75}{2197} a^{7} - \frac{53}{169} a^{5} + \frac{6}{13} a^{3}$, $\frac{1}{7054567} a^{14} - \frac{3}{371293} a^{12} - \frac{818}{7054567} a^{10} - \frac{105}{542659} a^{8} - \frac{630}{41743} a^{6} - \frac{1156}{3211} a^{4} - \frac{101}{247} a^{2}$, $\frac{1}{7054567} a^{15} - \frac{3}{371293} a^{13} - \frac{818}{7054567} a^{11} - \frac{105}{542659} a^{9} - \frac{630}{41743} a^{7} - \frac{1156}{3211} a^{5} - \frac{101}{247} a^{3}$, $\frac{1}{1742478049} a^{16} - \frac{3}{91709371} a^{14} + \frac{24870}{1742478049} a^{12} + \frac{12492}{134036773} a^{10} - \frac{12581}{10310521} a^{8} - \frac{7483}{793117} a^{6} - \frac{8955}{61009} a^{4} + \frac{29}{247} a^{2}$, $\frac{1}{1742478049} a^{17} - \frac{3}{91709371} a^{15} + \frac{24870}{1742478049} a^{13} + \frac{12492}{134036773} a^{11} - \frac{12581}{10310521} a^{9} - \frac{7483}{793117} a^{7} - \frac{8955}{61009} a^{5} + \frac{29}{247} a^{3}$, $\frac{1}{617061705157393628296619} a^{18} + \frac{248732079837}{4639561692912734047343} a^{16} + \frac{763017256740649}{617061705157393628296619} a^{14} - \frac{712496565091485166}{47466285012107202176663} a^{12} + \frac{76295063469977283}{3651252693239015552051} a^{10} + \frac{721245939758641419}{280865591787616580927} a^{8} + \frac{224530791880522163}{21605045522124352379} a^{6} - \frac{35438879005402416}{87469819927628957} a^{4} - \frac{26867178012837}{354128825617931} a^{2} + \frac{576288742341}{1433719941773}$, $\frac{1}{617061705157393628296619} a^{19} + \frac{248732079837}{4639561692912734047343} a^{17} + \frac{763017256740649}{617061705157393628296619} a^{15} - \frac{712496565091485166}{47466285012107202176663} a^{13} + \frac{76295063469977283}{3651252693239015552051} a^{11} + \frac{721245939758641419}{280865591787616580927} a^{9} + \frac{224530791880522163}{21605045522124352379} a^{7} - \frac{35438879005402416}{87469819927628957} a^{5} - \frac{26867178012837}{354128825617931} a^{3} + \frac{576288742341}{1433719941773} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 199790513425000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1030:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7372800
The 189 conjugacy class representatives for t20n1030 are not computed
Character table for t20n1030 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.189569215625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ R $16{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
19.8.4.2$x^{8} - 13718 x^{2} + 1303210$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
60662149Data not computed