Normalized defining polynomial
\( x^{20} - 9 x^{19} + 17 x^{18} + 81 x^{17} - 360 x^{16} + 5 x^{15} + 2099 x^{14} - 1973 x^{13} - 5862 x^{12} + 6877 x^{11} + 9551 x^{10} - 7985 x^{9} - 8322 x^{8} + 2115 x^{7} - 2731 x^{6} - 6223 x^{5} + 14836 x^{4} + 11897 x^{3} - 8527 x^{2} - 1677 x + 793 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(397805247472838231448960252575744=2^{16}\cdot 13^{15}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{4}{13} a^{11} + \frac{4}{13} a^{10} - \frac{5}{13} a^{9} + \frac{2}{13} a^{8} - \frac{4}{13} a^{7} - \frac{3}{13} a^{6} + \frac{3}{13} a^{5} + \frac{3}{13} a^{4} + \frac{3}{13} a^{3} + \frac{2}{13} a^{2}$, $\frac{1}{13} a^{13} + \frac{1}{13} a^{11} + \frac{5}{13} a^{10} - \frac{4}{13} a^{9} + \frac{1}{13} a^{8} + \frac{2}{13} a^{6} + \frac{4}{13} a^{5} + \frac{4}{13} a^{4} + \frac{3}{13} a^{3} + \frac{5}{13} a^{2}$, $\frac{1}{13} a^{14} + \frac{1}{13} a^{11} + \frac{5}{13} a^{10} + \frac{6}{13} a^{9} - \frac{2}{13} a^{8} + \frac{6}{13} a^{7} - \frac{6}{13} a^{6} + \frac{1}{13} a^{5} + \frac{2}{13} a^{3} - \frac{2}{13} a^{2}$, $\frac{1}{13} a^{15} + \frac{1}{13} a^{11} + \frac{2}{13} a^{10} + \frac{3}{13} a^{9} + \frac{4}{13} a^{8} - \frac{2}{13} a^{7} + \frac{4}{13} a^{6} - \frac{3}{13} a^{5} - \frac{1}{13} a^{4} - \frac{5}{13} a^{3} - \frac{2}{13} a^{2}$, $\frac{1}{13} a^{16} - \frac{2}{13} a^{11} - \frac{1}{13} a^{10} - \frac{4}{13} a^{9} - \frac{4}{13} a^{8} - \frac{5}{13} a^{7} - \frac{4}{13} a^{5} + \frac{5}{13} a^{4} - \frac{5}{13} a^{3} - \frac{2}{13} a^{2}$, $\frac{1}{13} a^{17} - \frac{6}{13} a^{11} + \frac{4}{13} a^{10} - \frac{1}{13} a^{9} - \frac{1}{13} a^{8} + \frac{5}{13} a^{7} + \frac{3}{13} a^{6} - \frac{2}{13} a^{5} + \frac{1}{13} a^{4} + \frac{4}{13} a^{3} + \frac{4}{13} a^{2}$, $\frac{1}{845} a^{18} + \frac{31}{845} a^{17} + \frac{5}{169} a^{16} + \frac{4}{845} a^{15} + \frac{1}{169} a^{14} + \frac{22}{845} a^{13} + \frac{4}{845} a^{12} + \frac{138}{845} a^{11} - \frac{40}{169} a^{10} + \frac{266}{845} a^{9} + \frac{32}{65} a^{8} - \frac{297}{845} a^{7} + \frac{12}{65} a^{6} + \frac{379}{845} a^{5} - \frac{298}{845} a^{4} - \frac{171}{845} a^{3} + \frac{212}{845} a^{2} + \frac{18}{65} a + \frac{23}{65}$, $\frac{1}{77070869944251372933201961295} a^{19} - \frac{40456454826198817863138304}{77070869944251372933201961295} a^{18} - \frac{274328897230128621319338249}{15414173988850274586640392259} a^{17} + \frac{1427991581480732405759042689}{77070869944251372933201961295} a^{16} + \frac{528663354071689548437775923}{15414173988850274586640392259} a^{15} - \frac{1907034106786325996891890008}{77070869944251372933201961295} a^{14} + \frac{1703918699112995985771265524}{77070869944251372933201961295} a^{13} - \frac{2629214004181492414811704952}{77070869944251372933201961295} a^{12} - \frac{2914932495385648490846844826}{15414173988850274586640392259} a^{11} + \frac{607319808080368648786117767}{5928528457250105610246304715} a^{10} + \frac{1807243729776181348641891306}{77070869944251372933201961295} a^{9} - \frac{8195821327723818535630046707}{77070869944251372933201961295} a^{8} + \frac{18102279057048921090261247906}{77070869944251372933201961295} a^{7} + \frac{3368128092916142370711684179}{77070869944251372933201961295} a^{6} - \frac{27925596314931412656869674358}{77070869944251372933201961295} a^{5} + \frac{21061223199457597748348586044}{77070869944251372933201961295} a^{4} - \frac{3653400056858953681517560493}{77070869944251372933201961295} a^{3} + \frac{36929252601472521234718299874}{77070869944251372933201961295} a^{2} - \frac{1908568627845625558219448207}{5928528457250105610246304715} a + \frac{9500386997814492661379786}{19437798220492149541791163}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1778990969.66 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 126 conjugacy class representatives for t20n803 are not computed |
| Character table for t20n803 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.10158928.1, 10.10.1341649635419392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.6.5.1 | $x^{6} - 17$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |