Normalized defining polynomial
\( x^{20} - 15 x^{18} - 10 x^{17} + 65 x^{16} + 118 x^{15} + 30 x^{14} - 650 x^{13} - 555 x^{12} + 1470 x^{11} + 481 x^{10} + 670 x^{9} - 1825 x^{8} - 4790 x^{7} + 7060 x^{6} + 720 x^{5} - 3685 x^{4} + 520 x^{3} + 495 x^{2} - 100 x - 5 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(397230818906250000000000000000=2^{16}\cdot 3^{2}\cdot 5^{22}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{14} a^{14} + \frac{1}{7} a^{13} - \frac{1}{7} a^{11} - \frac{1}{14} a^{10} - \frac{2}{7} a^{9} - \frac{1}{14} a^{8} - \frac{3}{14} a^{6} - \frac{3}{7} a^{5} + \frac{3}{14} a^{4} - \frac{1}{7} a^{2} - \frac{3}{7} a - \frac{5}{14}$, $\frac{1}{14} a^{15} + \frac{3}{14} a^{13} - \frac{1}{7} a^{12} + \frac{3}{14} a^{11} - \frac{1}{7} a^{10} - \frac{1}{2} a^{9} - \frac{5}{14} a^{8} - \frac{3}{14} a^{7} + \frac{1}{14} a^{5} + \frac{1}{14} a^{4} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2} + \frac{3}{14}$, $\frac{1}{28} a^{16} + \frac{3}{14} a^{13} - \frac{1}{7} a^{12} + \frac{1}{7} a^{11} - \frac{1}{7} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{5}{14} a^{6} - \frac{1}{14} a^{5} + \frac{5}{14} a^{4} + \frac{3}{7} a^{3} + \frac{3}{14} a^{2} - \frac{1}{2} a + \frac{1}{28}$, $\frac{1}{28} a^{17} - \frac{1}{14} a^{13} + \frac{1}{7} a^{12} - \frac{3}{14} a^{11} + \frac{3}{14} a^{10} + \frac{3}{28} a^{9} + \frac{3}{14} a^{8} - \frac{1}{7} a^{7} + \frac{1}{14} a^{6} + \frac{1}{7} a^{5} + \frac{2}{7} a^{4} - \frac{2}{7} a^{3} + \frac{3}{7} a^{2} + \frac{9}{28} a - \frac{3}{7}$, $\frac{1}{28} a^{18} - \frac{3}{14} a^{13} - \frac{3}{14} a^{12} + \frac{1}{14} a^{11} + \frac{1}{28} a^{10} - \frac{1}{14} a^{9} + \frac{2}{7} a^{8} + \frac{1}{14} a^{7} - \frac{1}{14} a^{6} - \frac{1}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{5}{28} a^{2} - \frac{5}{14} a + \frac{1}{7}$, $\frac{1}{45871349443286308775188628} a^{19} + \frac{21611055461710528128583}{45871349443286308775188628} a^{18} + \frac{6559526823779224667182}{1638262480117368170542451} a^{17} - \frac{361380421381596056909967}{22935674721643154387594314} a^{16} - \frac{197147134087758922051234}{11467837360821577193797157} a^{15} - \frac{404583261668546434722237}{22935674721643154387594314} a^{14} - \frac{1977086177207767113605183}{22935674721643154387594314} a^{13} - \frac{4705480265472761542855}{34698448898098569421474} a^{12} - \frac{85964553525391881435551}{6553049920469472682169804} a^{11} - \frac{3698442696539564907765133}{45871349443286308775188628} a^{10} + \frac{4282999752814766531229033}{22935674721643154387594314} a^{9} - \frac{9699389636270910483152305}{22935674721643154387594314} a^{8} + \frac{238730213663998085667026}{674578668283622187870421} a^{7} + \frac{20767203917932462765435}{1638262480117368170542451} a^{6} - \frac{1488363368669482168040383}{11467837360821577193797157} a^{5} - \frac{3102306102995992145406099}{22935674721643154387594314} a^{4} + \frac{702034118687013541645409}{3528565341791254521168356} a^{3} + \frac{246247665552411601545709}{504080763113036360166908} a^{2} + \frac{1897038329879733986171327}{11467837360821577193797157} a - \frac{2781532495641908856424961}{22935674721643154387594314}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 91555801.4786 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 22 conjugacy class representatives for t20n140 |
| Character table for t20n140 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.2450000.1, 10.6.126052500000000.1, 10.6.630262500000000.1, 10.10.30012500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.10.11.1 | $x^{10} + 20 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.1 | $x^{10} + 20 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |