Normalized defining polynomial
\( x^{20} - x^{19} - 27 x^{18} + 16 x^{17} + 287 x^{16} - 90 x^{15} - 1843 x^{14} + 644 x^{13} + 8804 x^{12} - 3820 x^{11} - 31952 x^{10} + 15179 x^{9} + 100191 x^{8} - 5711 x^{7} - 175095 x^{6} - 60509 x^{5} + 92100 x^{4} + 56930 x^{3} + 6417 x^{2} - 173 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(393613485959461667208104449865557=97^{2}\cdot 397^{3}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 397, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2310216924360310341737194776297153790573244321} a^{19} - \frac{195328913123569756086223973145589198970904285}{2310216924360310341737194776297153790573244321} a^{18} + \frac{631771115888278089697443574158763855863457351}{2310216924360310341737194776297153790573244321} a^{17} + \frac{705433295435459506404718050182608900451598820}{2310216924360310341737194776297153790573244321} a^{16} - \frac{115806533052979432536217669967583650446421219}{2310216924360310341737194776297153790573244321} a^{15} - \frac{466993626903770367725240729511541194083905287}{2310216924360310341737194776297153790573244321} a^{14} - \frac{1051766574634658676956237038955334788454698151}{2310216924360310341737194776297153790573244321} a^{13} + \frac{1077492523204422693034058661590878089324635421}{2310216924360310341737194776297153790573244321} a^{12} - \frac{859505905387807174248672219001674805410116352}{2310216924360310341737194776297153790573244321} a^{11} - \frac{951527901654188085536304349124962204000603603}{2310216924360310341737194776297153790573244321} a^{10} - \frac{299495693257317328073725728196738836387952472}{2310216924360310341737194776297153790573244321} a^{9} + \frac{172537858465074854595937829774731993945673968}{2310216924360310341737194776297153790573244321} a^{8} + \frac{116740740881538409869929547830755928017216005}{2310216924360310341737194776297153790573244321} a^{7} - \frac{733873914990059538237883422461024404979237311}{2310216924360310341737194776297153790573244321} a^{6} - \frac{362018429277345065822182079764157930545257218}{2310216924360310341737194776297153790573244321} a^{5} + \frac{80478104606446855514490798324319270507135422}{2310216924360310341737194776297153790573244321} a^{4} + \frac{273566835107775971859406456403608345215888829}{2310216924360310341737194776297153790573244321} a^{3} + \frac{977367157649958794971791311917875140445659759}{2310216924360310341737194776297153790573244321} a^{2} - \frac{457898320661207224710578802398210200385384825}{2310216924360310341737194776297153790573244321} a + \frac{238142363527935828546151863534990650978404520}{2310216924360310341737194776297153790573244321}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1417954739.86 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 280 conjugacy class representatives for t20n845 are not computed |
| Character table for t20n845 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.10265213755597.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 397 | Data not computed | ||||||
| 401 | Data not computed | ||||||