Normalized defining polynomial
\( x^{20} - 9 x^{18} - 112 x^{16} + 1045 x^{14} - 273 x^{12} - 4700 x^{10} - 797 x^{8} + 3529 x^{6} + 588 x^{4} - 585 x^{2} + 17 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(393578160617730190869682473402368=2^{24}\cdot 17\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{12} a^{6} - \frac{1}{2} a^{5} + \frac{1}{12} a^{4} - \frac{1}{4} a^{3} + \frac{1}{6} a^{2} + \frac{1}{4} a - \frac{1}{6}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{6} a^{7} - \frac{1}{4} a^{6} - \frac{5}{12} a^{5} - \frac{1}{2} a^{4} - \frac{1}{12} a^{3} - \frac{1}{4} a^{2} - \frac{5}{12} a + \frac{1}{4}$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{10} - \frac{1}{4} a^{9} + \frac{1}{6} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{12}$, $\frac{1}{24} a^{15} - \frac{1}{24} a^{12} + \frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{6} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{6} a^{6} + \frac{1}{4} a^{5} - \frac{5}{12} a^{4} + \frac{1}{8} a^{3} - \frac{1}{12} a^{2} + \frac{5}{12} a + \frac{5}{24}$, $\frac{1}{72} a^{16} + \frac{1}{36} a^{14} - \frac{1}{24} a^{13} + \frac{1}{36} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} + \frac{5}{36} a^{8} - \frac{1}{12} a^{7} + \frac{1}{12} a^{5} + \frac{7}{24} a^{4} + \frac{1}{6} a^{3} + \frac{1}{18} a^{2} + \frac{11}{24} a + \frac{1}{36}$, $\frac{1}{72} a^{17} - \frac{1}{72} a^{15} - \frac{1}{24} a^{14} + \frac{1}{36} a^{13} - \frac{1}{24} a^{12} + \frac{1}{12} a^{11} + \frac{1}{12} a^{10} + \frac{1}{18} a^{9} - \frac{1}{12} a^{8} - \frac{1}{4} a^{7} + \frac{1}{6} a^{6} + \frac{7}{24} a^{5} + \frac{1}{12} a^{4} + \frac{13}{72} a^{3} + \frac{7}{24} a^{2} - \frac{7}{18} a - \frac{11}{24}$, $\frac{1}{43130870592552} a^{18} + \frac{15036575027}{2537110034856} a^{16} - \frac{222392065651}{7188478432092} a^{14} - \frac{1}{24} a^{13} - \frac{1244154112133}{43130870592552} a^{12} - \frac{1}{12} a^{11} - \frac{391870979752}{5391358824069} a^{10} - \frac{1}{4} a^{9} - \frac{2599777914563}{21565435296276} a^{8} + \frac{1}{6} a^{7} - \frac{772785967333}{14376956864184} a^{6} - \frac{5}{12} a^{5} - \frac{8197417230563}{43130870592552} a^{4} - \frac{1}{12} a^{3} + \frac{3434909114503}{10782717648138} a^{2} + \frac{5}{24} a + \frac{503563168739}{2537110034856}$, $\frac{1}{86261741185104} a^{19} - \frac{1}{86261741185104} a^{18} - \frac{10100532173}{2537110034856} a^{17} + \frac{10100532173}{2537110034856} a^{16} + \frac{176967847243}{14376956864184} a^{15} - \frac{176967847243}{14376956864184} a^{14} + \frac{1152005365231}{86261741185104} a^{13} - \frac{1152005365231}{86261741185104} a^{12} + \frac{1013377648519}{21565435296276} a^{11} - \frac{1013377648519}{21565435296276} a^{10} - \frac{1000369022611}{21565435296276} a^{9} - \frac{2195494900729}{10782717648138} a^{8} - \frac{1970865706015}{28753913728368} a^{7} - \frac{5217612726077}{28753913728368} a^{6} + \frac{2191210012799}{43130870592552} a^{5} + \frac{19374225283477}{43130870592552} a^{4} - \frac{17690816413975}{43130870592552} a^{3} + \frac{6908098765837}{43130870592552} a^{2} + \frac{855939562469}{5074220069712} a + \frac{412615454959}{5074220069712}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4206577043.91 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 128 conjugacy class representatives for t20n513 are not computed |
| Character table for t20n513 is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), 5.5.2382032.1, 10.10.300726051798272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.8.12.19 | $x^{8} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| 2.8.12.19 | $x^{8} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $53$ | 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |