Normalized defining polynomial
\( x^{20} - 316 x^{18} + 42619 x^{16} - 3247364 x^{14} + 155690232 x^{12} - 4929882768 x^{10} + 104758408713 x^{8} - 1478902722150 x^{6} + 13305245801616 x^{4} - 69041174949655 x^{2} + 157218521219761 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(370270629040986660253142367975040000000000=2^{16}\cdot 5^{10}\cdot 3541^{4}\cdot 60662149^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $119.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3541, 60662149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3541} a^{14} - \frac{316}{3541} a^{12} + \frac{127}{3541} a^{10} - \frac{267}{3541} a^{8} - \frac{456}{3541} a^{6} + \frac{121}{3541} a^{4} - \frac{1261}{3541} a^{2}$, $\frac{1}{3541} a^{15} - \frac{316}{3541} a^{13} + \frac{127}{3541} a^{11} - \frac{267}{3541} a^{9} - \frac{456}{3541} a^{7} + \frac{121}{3541} a^{5} - \frac{1261}{3541} a^{3}$, $\frac{1}{12538681} a^{16} - \frac{316}{12538681} a^{14} + \frac{42619}{12538681} a^{12} - \frac{3247364}{12538681} a^{10} + \frac{5226060}{12538681} a^{8} - \frac{2181135}{12538681} a^{6} - \frac{2271042}{12538681} a^{4} - \frac{823}{3541} a^{2}$, $\frac{1}{12538681} a^{17} - \frac{316}{12538681} a^{15} + \frac{42619}{12538681} a^{13} - \frac{3247364}{12538681} a^{11} + \frac{5226060}{12538681} a^{9} - \frac{2181135}{12538681} a^{7} - \frac{2271042}{12538681} a^{5} - \frac{823}{3541} a^{3}$, $\frac{1}{3627078336199582601125044195522952540273138} a^{18} - \frac{1}{25077362} a^{17} + \frac{27731378738084715653562286243425621}{1813539168099791300562522097761476270136569} a^{16} - \frac{3225}{25077362} a^{15} + \frac{30837948582168236817333755552155015632}{1813539168099791300562522097761476270136569} a^{14} + \frac{1076337}{25077362} a^{13} - \frac{1000525806887862878552263718072850987615699}{3627078336199582601125044195522952540273138} a^{12} - \frac{4870512}{12538681} a^{11} + \frac{776396790973009836205176410030666804698883}{3627078336199582601125044195522952540273138} a^{10} - \frac{4280613}{25077362} a^{9} + \frac{372283625715387977288990376921634369931120}{1813539168099791300562522097761476270136569} a^{8} + \frac{3795831}{25077362} a^{7} - \frac{720947423417945347262051194492689357093130}{1813539168099791300562522097761476270136569} a^{6} + \frac{1842581}{25077362} a^{5} + \frac{15064164368914359530340618100722590445}{44535175966007914751728745202447755366} a^{4} + \frac{1042}{3541} a^{3} - \frac{115374315495554121949566648669886065}{289271123190675526486800660733210498} a^{2} - \frac{1}{2} a + \frac{24253813573063698584006373282711}{81691929734729038827111172192378}$, $\frac{1}{3627078336199582601125044195522952540273138} a^{19} - \frac{89172804119168331936275757879754007}{3627078336199582601125044195522952540273138} a^{17} - \frac{1}{25077362} a^{16} - \frac{404773788980627812825298554327991896761}{3627078336199582601125044195522952540273138} a^{15} - \frac{3225}{25077362} a^{14} - \frac{422424600213510908238075968343525096861393}{1813539168099791300562522097761476270136569} a^{13} + \frac{1076337}{25077362} a^{12} - \frac{632501685780653603655104049678363724336093}{3627078336199582601125044195522952540273138} a^{11} - \frac{4870512}{12538681} a^{10} + \frac{125438386203472385847359135471683545124603}{3627078336199582601125044195522952540273138} a^{9} - \frac{4280613}{25077362} a^{8} - \frac{892882698429898157334142869569577145269341}{3627078336199582601125044195522952540273138} a^{7} + \frac{3795831}{25077362} a^{6} + \frac{9168212592963122885725714819593947914}{22267587983003957375864372601223877683} a^{5} + \frac{1842581}{25077362} a^{4} - \frac{30251324711966463491716807245428189}{289271123190675526486800660733210498} a^{3} + \frac{1042}{3541} a^{2} - \frac{8296075647150410414774606406739}{40845964867364519413555586096189} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50916740385800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1030 are not computed |
| Character table for t20n1030 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.189569215625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3541 | Data not computed | ||||||
| 60662149 | Data not computed | ||||||