Normalized defining polynomial
\( x^{20} - 4 x^{19} - 6 x^{18} + 59 x^{17} - 49 x^{16} - 263 x^{15} + 299 x^{14} - 33 x^{13} - 965 x^{12} + 1284 x^{11} + 9296 x^{10} + 13582 x^{9} - 9493 x^{8} - 28237 x^{7} - 22667 x^{6} - 11937 x^{5} + 4488 x^{4} + 6048 x^{3} + 685 x^{2} - 458 x - 89 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36019579053467556544112587890625=5^{10}\cdot 19^{6}\cdot 97^{2}\cdot 1699^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 97, 1699$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{833420603897550230961861252529993875147323} a^{19} - \frac{276814659023974550007813314964620472152205}{833420603897550230961861252529993875147323} a^{18} - \frac{55963481861441707642363772638197733485964}{833420603897550230961861252529993875147323} a^{17} - \frac{106311297366013446547317927973205954633234}{833420603897550230961861252529993875147323} a^{16} + \frac{7667536510776370755660623983683977781457}{833420603897550230961861252529993875147323} a^{15} - \frac{288880694434716357441193203036981355705602}{833420603897550230961861252529993875147323} a^{14} - \frac{48357839367249094942344326067458314075133}{833420603897550230961861252529993875147323} a^{13} - \frac{43735426160167893114476791783216945152388}{833420603897550230961861252529993875147323} a^{12} + \frac{46304101072671857300644790308125370082915}{833420603897550230961861252529993875147323} a^{11} - \frac{356162042788262058884069955239170855897483}{833420603897550230961861252529993875147323} a^{10} - \frac{82291962462318675712216600983642407440991}{833420603897550230961861252529993875147323} a^{9} + \frac{89017792978649184717005337203667621978442}{833420603897550230961861252529993875147323} a^{8} + \frac{42312273665772021170024594018760205948058}{833420603897550230961861252529993875147323} a^{7} - \frac{204096565458873994748226596895910546687879}{833420603897550230961861252529993875147323} a^{6} - \frac{190693858891839757661113608783517166060340}{833420603897550230961861252529993875147323} a^{5} - \frac{400708040864410702777834484237136669971061}{833420603897550230961861252529993875147323} a^{4} + \frac{249973393909914849434871735154054178961838}{833420603897550230961861252529993875147323} a^{3} + \frac{116137707171787957021812990224073363125688}{833420603897550230961861252529993875147323} a^{2} - \frac{49046718085479311210624412983233262830638}{833420603897550230961861252529993875147323} a - \frac{399848759356067696286209377238572286088941}{833420603897550230961861252529993875147323}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 323360926.193 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n760 are not computed |
| Character table for t20n760 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.3256446753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $97$ | 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 1699 | Data not computed | ||||||