Normalized defining polynomial
\( x^{20} - 6 x^{19} + 3 x^{18} + 64 x^{17} - 282 x^{16} + 704 x^{15} - 1118 x^{14} + 984 x^{13} + 92 x^{12} - 1700 x^{11} + 2728 x^{10} - 4420 x^{9} + 7505 x^{8} - 5654 x^{7} - 3233 x^{6} + 8202 x^{5} - 2680 x^{4} - 2020 x^{3} + 568 x^{2} + 114 x - 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3444305446176236469450454335488=2^{20}\cdot 17^{3}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{15} + \frac{2}{9} a^{14} - \frac{1}{3} a^{13} - \frac{4}{9} a^{11} + \frac{4}{9} a^{10} + \frac{1}{9} a^{8} + \frac{2}{9} a^{7} - \frac{1}{3} a^{6} - \frac{1}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{9} a^{2}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{15} + \frac{4}{9} a^{14} + \frac{1}{3} a^{13} - \frac{4}{9} a^{12} - \frac{1}{9} a^{11} - \frac{4}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{4}{9} a^{7} + \frac{1}{3} a^{6} - \frac{1}{9} a^{5} - \frac{1}{9} a^{4} + \frac{1}{3} a^{3} - \frac{1}{9} a^{2}$, $\frac{1}{81} a^{18} - \frac{4}{81} a^{17} - \frac{1}{81} a^{16} - \frac{8}{81} a^{15} - \frac{5}{81} a^{14} - \frac{13}{81} a^{13} - \frac{1}{27} a^{12} - \frac{19}{81} a^{11} + \frac{5}{27} a^{10} + \frac{4}{9} a^{9} - \frac{2}{81} a^{8} + \frac{13}{81} a^{7} - \frac{10}{81} a^{6} - \frac{2}{27} a^{5} - \frac{2}{9} a^{4} + \frac{5}{27} a^{3} + \frac{32}{81} a^{2} - \frac{11}{27} a - \frac{2}{9}$, $\frac{1}{618399613598345222846498921204649} a^{19} + \frac{1988312223852656957557144079461}{618399613598345222846498921204649} a^{18} + \frac{10680944019662994906299875008878}{206133204532781740948832973734883} a^{17} + \frac{31053485935555417889558088479933}{618399613598345222846498921204649} a^{16} + \frac{5429372389046028908775684968765}{68711068177593913649610991244961} a^{15} - \frac{52681984126690127938642740165203}{618399613598345222846498921204649} a^{14} - \frac{42293313642889732371627841849859}{618399613598345222846498921204649} a^{13} + \frac{73024539472338449234358248738282}{618399613598345222846498921204649} a^{12} + \frac{140993311618521081970637554176796}{618399613598345222846498921204649} a^{11} - \frac{24272918195520873524058653454914}{206133204532781740948832973734883} a^{10} + \frac{63901156015726925644625618819995}{618399613598345222846498921204649} a^{9} - \frac{34350861942660020716796272048418}{206133204532781740948832973734883} a^{8} + \frac{188991868612045375703878770823939}{618399613598345222846498921204649} a^{7} + \frac{57938925232121476681752215963263}{618399613598345222846498921204649} a^{6} + \frac{31655612645151588337283447167454}{206133204532781740948832973734883} a^{5} - \frac{12985532636469947757565780753264}{206133204532781740948832973734883} a^{4} + \frac{140133229592084477253225138844043}{618399613598345222846498921204649} a^{3} + \frac{124185487650263797711722290375131}{618399613598345222846498921204649} a^{2} + \frac{49760258190204413885342164980572}{206133204532781740948832973734883} a - \frac{31210916057570895390570792233746}{68711068177593913649610991244961}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 160622725.61 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 163840 |
| The 280 conjugacy class representatives for t20n845 are not computed |
| Character table for t20n845 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.450117987550208.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.3.4 | $x^{4} + 459$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 401 | Data not computed | ||||||