Normalized defining polynomial
\( x^{20} - 10 x^{19} + 47 x^{18} - 138 x^{17} + 241 x^{16} - 92 x^{15} - 728 x^{14} + 2218 x^{13} - 3155 x^{12} + 1380 x^{11} + 3249 x^{10} - 6912 x^{9} + 5386 x^{8} + 534 x^{7} - 4750 x^{6} + 3768 x^{5} - 704 x^{4} - 730 x^{3} + 479 x^{2} - 84 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33966664043402470640067805184=2^{20}\cdot 11^{16}\cdot 89^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2190706864193} a^{18} - \frac{9}{2190706864193} a^{17} - \frac{737466690808}{2190706864193} a^{16} - \frac{672387065911}{2190706864193} a^{15} - \frac{736893035804}{2190706864193} a^{14} + \frac{494723421909}{2190706864193} a^{13} + \frac{485804408906}{2190706864193} a^{12} + \frac{588234553019}{2190706864193} a^{11} - \frac{944890694460}{2190706864193} a^{10} + \frac{1065237729613}{2190706864193} a^{9} + \frac{685366501983}{2190706864193} a^{8} - \frac{452122710365}{2190706864193} a^{7} + \frac{889369760657}{2190706864193} a^{6} + \frac{15224772551}{2190706864193} a^{5} + \frac{358561034649}{2190706864193} a^{4} - \frac{327350783150}{2190706864193} a^{3} - \frac{765780797863}{2190706864193} a^{2} + \frac{54369595082}{2190706864193} a - \frac{539207034441}{2190706864193}$, $\frac{1}{50386257876439} a^{19} + \frac{2}{50386257876439} a^{18} - \frac{18263121604451}{50386257876439} a^{17} - \frac{4403106936413}{50386257876439} a^{16} + \frac{122625372180}{2190706864193} a^{15} - \frac{235669265554}{2190706864193} a^{14} + \frac{3737055185712}{50386257876439} a^{13} - \frac{11593571862559}{50386257876439} a^{12} + \frac{20860637438100}{50386257876439} a^{11} - \frac{11519266773640}{50386257876439} a^{10} - \frac{18266914570976}{50386257876439} a^{9} + \frac{1070111466304}{2190706864193} a^{8} + \frac{15632381724379}{50386257876439} a^{7} - \frac{9918069637959}{50386257876439} a^{6} - \frac{19190328245027}{50386257876439} a^{5} - \frac{2955299994590}{50386257876439} a^{4} + \frac{6586894908452}{50386257876439} a^{3} - \frac{3987805453025}{50386257876439} a^{2} + \frac{13203099696619}{50386257876439} a + \frac{2831550077921}{50386257876439}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10041308.2795 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.19535810978816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |