Normalized defining polynomial
\( x^{20} - 2 x^{19} - 15 x^{18} + 24 x^{17} + 74 x^{16} - 84 x^{15} - 146 x^{14} + 36 x^{13} + 185 x^{12} + 356 x^{11} - 524 x^{10} - 850 x^{9} + 1083 x^{8} + 786 x^{7} - 1252 x^{6} - 312 x^{5} + 874 x^{4} + 46 x^{3} - 292 x^{2} - 12 x + 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33966664043402470640067805184=2^{20}\cdot 11^{16}\cdot 89^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{43} a^{18} - \frac{6}{43} a^{17} - \frac{9}{43} a^{16} - \frac{4}{43} a^{15} - \frac{6}{43} a^{14} + \frac{12}{43} a^{13} - \frac{8}{43} a^{11} + \frac{2}{43} a^{10} + \frac{19}{43} a^{9} + \frac{9}{43} a^{8} + \frac{19}{43} a^{7} - \frac{15}{43} a^{6} - \frac{12}{43} a^{5} + \frac{12}{43} a^{4} - \frac{15}{43} a^{3} - \frac{13}{43} a^{2} - \frac{19}{43} a + \frac{18}{43}$, $\frac{1}{2584589586236719201545569} a^{19} + \frac{13808869479029650785652}{2584589586236719201545569} a^{18} + \frac{839499080046373923976023}{2584589586236719201545569} a^{17} - \frac{1037818320685081686655015}{2584589586236719201545569} a^{16} - \frac{181872537119655457908878}{2584589586236719201545569} a^{15} - \frac{886515267844338934567284}{2584589586236719201545569} a^{14} + \frac{1231027873648686845431275}{2584589586236719201545569} a^{13} - \frac{803046857487691669176391}{2584589586236719201545569} a^{12} + \frac{1042600574094527368996432}{2584589586236719201545569} a^{11} - \frac{1103466803222178960195911}{2584589586236719201545569} a^{10} - \frac{1198573489056160435935407}{2584589586236719201545569} a^{9} + \frac{1189226423916094220832977}{2584589586236719201545569} a^{8} - \frac{839433924692796788817145}{2584589586236719201545569} a^{7} + \frac{1412311158692591171927}{60106734563644632594083} a^{6} + \frac{865461713858502904869826}{2584589586236719201545569} a^{5} - \frac{509643217872614883949352}{2584589586236719201545569} a^{4} + \frac{400821780208801722012516}{2584589586236719201545569} a^{3} + \frac{22674793787844120366514}{60106734563644632594083} a^{2} + \frac{320286155804973021585452}{2584589586236719201545569} a + \frac{85356426784788706377668}{2584589586236719201545569}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10654670.1691 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.19535810978816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $89$ | $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.4.3.1 | $x^{4} - 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |