Normalized defining polynomial
\( x^{20} - 2 x^{19} + 15 x^{18} - 24 x^{17} - 87 x^{16} + 706 x^{15} - 3607 x^{14} + 3752 x^{13} + 14398 x^{12} - 81692 x^{11} + 144876 x^{10} + 120056 x^{9} - 762268 x^{8} + 824752 x^{7} + 312200 x^{6} - 1143296 x^{5} + 704608 x^{4} - 122592 x^{3} - 8128 x^{2} + 1216 x + 64 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3281763883433900353692902429195567104=2^{16}\cdot 33769^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{48} a^{15} + \frac{1}{24} a^{14} + \frac{1}{48} a^{13} - \frac{1}{24} a^{12} + \frac{1}{16} a^{11} + \frac{1}{12} a^{10} - \frac{3}{16} a^{9} + \frac{5}{24} a^{8} + \frac{1}{6} a^{7} - \frac{1}{24} a^{6} + \frac{5}{12} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{48} a^{16} - \frac{1}{16} a^{14} + \frac{1}{24} a^{13} - \frac{5}{48} a^{12} + \frac{1}{12} a^{11} - \frac{5}{48} a^{10} - \frac{1}{24} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{6} a^{5} + \frac{1}{12} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{192} a^{17} - \frac{1}{192} a^{15} + \frac{3}{64} a^{13} - \frac{1}{32} a^{12} + \frac{13}{192} a^{11} + \frac{1}{16} a^{10} + \frac{7}{32} a^{9} - \frac{11}{96} a^{8} - \frac{1}{24} a^{7} - \frac{5}{48} a^{6} - \frac{1}{12} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{7104} a^{18} - \frac{5}{2368} a^{17} - \frac{7}{2368} a^{16} + \frac{17}{2368} a^{15} - \frac{113}{2368} a^{14} - \frac{193}{7104} a^{13} - \frac{637}{7104} a^{12} + \frac{709}{7104} a^{11} - \frac{19}{3552} a^{10} - \frac{1}{8} a^{9} - \frac{355}{3552} a^{8} + \frac{409}{1776} a^{7} + \frac{389}{1776} a^{6} + \frac{52}{111} a^{5} + \frac{125}{444} a^{4} + \frac{23}{222} a^{3} - \frac{33}{74} a^{2} + \frac{49}{111} a + \frac{103}{222}$, $\frac{1}{2020664504169773559130810033719281824614336} a^{19} - \frac{22208475128998313119659094443396132865}{1010332252084886779565405016859640912307168} a^{18} - \frac{1041130617350830624279932731889776157261}{673554834723257853043603344573093941538112} a^{17} + \frac{6680888671594220446724932122283420182317}{1010332252084886779565405016859640912307168} a^{16} + \frac{6320818099925638639292230918087261244803}{2020664504169773559130810033719281824614336} a^{15} - \frac{11140420485390600583797377780694064547305}{252583063021221694891351254214910228076792} a^{14} + \frac{45226757650516867444528788015729475115383}{2020664504169773559130810033719281824614336} a^{13} + \frac{117562275924721559678186208990240574594459}{1010332252084886779565405016859640912307168} a^{12} + \frac{169523928502887418948279842776330057132}{10524294292550903953806302258954592836533} a^{11} - \frac{18358234706967988712612637503113370767015}{336777417361628926521801672286546970769056} a^{10} - \frac{115520010823620207000866884758097623370075}{505166126042443389782702508429820456153584} a^{9} + \frac{12985115055618457897413515940510590377531}{84194354340407231630450418071636742692264} a^{8} + \frac{47413845951547916922944731060360072270873}{252583063021221694891351254214910228076792} a^{7} - \frac{27989921301781630406641682049309972311177}{126291531510610847445675627107455114038396} a^{6} + \frac{19735953272466316661017576510844771277409}{126291531510610847445675627107455114038396} a^{5} - \frac{10436881577016653676212829747059480954471}{31572882877652711861418906776863778509599} a^{4} - \frac{6003807942457902920299792149139498080835}{63145765755305423722837813553727557019198} a^{3} + \frac{30467169492326966637450880457320997623781}{63145765755305423722837813553727557019198} a^{2} + \frac{14785272210889788008493630117645669319951}{31572882877652711861418906776863778509599} a + \frac{1345186513403861928004081971089435875838}{10524294292550903953806302258954592836533}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 152738986845 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.135076.1, 10.10.616133159929744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.8.8.3 | $x^{8} + 2 x^{7} + 2 x^{6} + 16$ | $2$ | $4$ | $8$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ | |
| 33769 | Data not computed | ||||||